Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0pnffsumgt Structured version   Visualization version   GIF version

Theorem sge0pnffsumgt 40977
Description: If the sum of nonnegative extended reals is +∞, then any real number can be dominated by finite subsums. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
sge0pnffsumgt.k 𝑘𝜑
sge0pnffsumgt.a (𝜑𝐴𝑉)
sge0pnffsumgt.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
sge0pnffsumgt.p (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = +∞)
sge0pnffsumgt.y (𝜑𝑌 ∈ ℝ)
Assertion
Ref Expression
sge0pnffsumgt (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < Σ𝑘𝑥 𝐵)
Distinct variable groups:   𝐴,𝑘,𝑥   𝑥,𝐵   𝑥,𝑌   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝑉(𝑥,𝑘)   𝑌(𝑘)

Proof of Theorem sge0pnffsumgt
StepHypRef Expression
1 sge0pnffsumgt.k . . 3 𝑘𝜑
2 sge0pnffsumgt.a . . 3 (𝜑𝐴𝑉)
3 icossicc 12298 . . . 4 (0[,)+∞) ⊆ (0[,]+∞)
4 sge0pnffsumgt.b . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
53, 4sseldi 3634 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
6 sge0pnffsumgt.p . . 3 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = +∞)
7 sge0pnffsumgt.y . . 3 (𝜑𝑌 ∈ ℝ)
81, 2, 5, 6, 7sge0pnffigtmpt 40975 . 2 (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘(𝑘𝑥𝐵)))
9 simpr 476 . . . . 5 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑌 < (Σ^‘(𝑘𝑥𝐵))) → 𝑌 < (Σ^‘(𝑘𝑥𝐵)))
10 nfv 1883 . . . . . . . 8 𝑘 𝑥 ∈ (𝒫 𝐴 ∩ Fin)
111, 10nfan 1868 . . . . . . 7 𝑘(𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin))
12 elinel2 3833 . . . . . . . 8 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin)
1312adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin)
14 simpll 805 . . . . . . . 8 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝜑)
15 elpwinss 39530 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝐴)
1615sselda 3636 . . . . . . . . 9 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑥) → 𝑘𝐴)
1716adantll 750 . . . . . . . 8 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝐴)
1814, 17, 4syl2anc 694 . . . . . . 7 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐵 ∈ (0[,)+∞))
1911, 13, 18sge0fsummptf 40971 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑘𝑥𝐵)) = Σ𝑘𝑥 𝐵)
2019adantr 480 . . . . 5 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑌 < (Σ^‘(𝑘𝑥𝐵))) → (Σ^‘(𝑘𝑥𝐵)) = Σ𝑘𝑥 𝐵)
219, 20breqtrd 4711 . . . 4 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑌 < (Σ^‘(𝑘𝑥𝐵))) → 𝑌 < Σ𝑘𝑥 𝐵)
2221ex 449 . . 3 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑌 < (Σ^‘(𝑘𝑥𝐵)) → 𝑌 < Σ𝑘𝑥 𝐵))
2322reximdva 3046 . 2 (𝜑 → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘(𝑘𝑥𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < Σ𝑘𝑥 𝐵))
248, 23mpd 15 1 (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < Σ𝑘𝑥 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wnf 1748  wcel 2030  wrex 2942  cin 3606  𝒫 cpw 4191   class class class wbr 4685  cmpt 4762  cfv 5926  (class class class)co 6690  Fincfn 7997  cr 9973  0cc0 9974  +∞cpnf 10109   < clt 10112  [,)cico 12215  [,]cicc 12216  Σcsu 14460  Σ^csumge0 40897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-sumge0 40898
This theorem is referenced by:  sge0gtfsumgt  40978
  Copyright terms: Public domain W3C validator