Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0pr Structured version   Visualization version   GIF version

Theorem sge0pr 41083
Description: Sum of a pair of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0pr.a (𝜑𝐴𝑉)
sge0pr.b (𝜑𝐵𝑊)
sge0pr.d (𝜑𝐷 ∈ (0[,]+∞))
sge0pr.e (𝜑𝐸 ∈ (0[,]+∞))
sge0pr.cd (𝑘 = 𝐴𝐶 = 𝐷)
sge0pr.ce (𝑘 = 𝐵𝐶 = 𝐸)
sge0pr.ab (𝜑𝐴𝐵)
Assertion
Ref Expression
sge0pr (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐷,𝑘   𝑘,𝐸   𝑘,𝑉   𝑘,𝑊   𝜑,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem sge0pr
StepHypRef Expression
1 iccssxr 12420 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
2 sge0pr.e . . . . . . 7 (𝜑𝐸 ∈ (0[,]+∞))
31, 2sseldi 3730 . . . . . 6 (𝜑𝐸 ∈ ℝ*)
4 mnfxr 10259 . . . . . . . 8 -∞ ∈ ℝ*
54a1i 11 . . . . . . 7 (𝜑 → -∞ ∈ ℝ*)
6 0xr 10249 . . . . . . . . 9 0 ∈ ℝ*
76a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ ℝ*)
8 mnflt0 12123 . . . . . . . . 9 -∞ < 0
98a1i 11 . . . . . . . 8 (𝜑 → -∞ < 0)
10 pnfxr 10255 . . . . . . . . . 10 +∞ ∈ ℝ*
1110a1i 11 . . . . . . . . 9 (𝜑 → +∞ ∈ ℝ*)
12 iccgelb 12394 . . . . . . . . 9 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐸 ∈ (0[,]+∞)) → 0 ≤ 𝐸)
137, 11, 2, 12syl3anc 1463 . . . . . . . 8 (𝜑 → 0 ≤ 𝐸)
145, 7, 3, 9, 13xrltletrd 12156 . . . . . . 7 (𝜑 → -∞ < 𝐸)
155, 3, 14xrgtned 40005 . . . . . 6 (𝜑𝐸 ≠ -∞)
16 xaddpnf2 12222 . . . . . 6 ((𝐸 ∈ ℝ*𝐸 ≠ -∞) → (+∞ +𝑒 𝐸) = +∞)
173, 15, 16syl2anc 696 . . . . 5 (𝜑 → (+∞ +𝑒 𝐸) = +∞)
1817eqcomd 2754 . . . 4 (𝜑 → +∞ = (+∞ +𝑒 𝐸))
1918adantr 472 . . 3 ((𝜑𝐷 = +∞) → +∞ = (+∞ +𝑒 𝐸))
20 prex 5046 . . . . 5 {𝐴, 𝐵} ∈ V
2120a1i 11 . . . 4 ((𝜑𝐷 = +∞) → {𝐴, 𝐵} ∈ V)
22 sge0pr.cd . . . . . . . . . 10 (𝑘 = 𝐴𝐶 = 𝐷)
2322adantl 473 . . . . . . . . 9 ((𝜑𝑘 = 𝐴) → 𝐶 = 𝐷)
24 sge0pr.d . . . . . . . . . 10 (𝜑𝐷 ∈ (0[,]+∞))
2524adantr 472 . . . . . . . . 9 ((𝜑𝑘 = 𝐴) → 𝐷 ∈ (0[,]+∞))
2623, 25eqeltrd 2827 . . . . . . . 8 ((𝜑𝑘 = 𝐴) → 𝐶 ∈ (0[,]+∞))
2726adantlr 753 . . . . . . 7 (((𝜑𝑘 ∈ {𝐴, 𝐵}) ∧ 𝑘 = 𝐴) → 𝐶 ∈ (0[,]+∞))
28 simpll 807 . . . . . . . 8 (((𝜑𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝜑)
29 simpl 474 . . . . . . . . . 10 ((𝑘 ∈ {𝐴, 𝐵} ∧ ¬ 𝑘 = 𝐴) → 𝑘 ∈ {𝐴, 𝐵})
30 neqne 2928 . . . . . . . . . . 11 𝑘 = 𝐴𝑘𝐴)
3130adantl 473 . . . . . . . . . 10 ((𝑘 ∈ {𝐴, 𝐵} ∧ ¬ 𝑘 = 𝐴) → 𝑘𝐴)
32 elprn1 40337 . . . . . . . . . 10 ((𝑘 ∈ {𝐴, 𝐵} ∧ 𝑘𝐴) → 𝑘 = 𝐵)
3329, 31, 32syl2anc 696 . . . . . . . . 9 ((𝑘 ∈ {𝐴, 𝐵} ∧ ¬ 𝑘 = 𝐴) → 𝑘 = 𝐵)
3433adantll 752 . . . . . . . 8 (((𝜑𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝑘 = 𝐵)
35 sge0pr.ce . . . . . . . . . 10 (𝑘 = 𝐵𝐶 = 𝐸)
3635adantl 473 . . . . . . . . 9 ((𝜑𝑘 = 𝐵) → 𝐶 = 𝐸)
372adantr 472 . . . . . . . . 9 ((𝜑𝑘 = 𝐵) → 𝐸 ∈ (0[,]+∞))
3836, 37eqeltrd 2827 . . . . . . . 8 ((𝜑𝑘 = 𝐵) → 𝐶 ∈ (0[,]+∞))
3928, 34, 38syl2anc 696 . . . . . . 7 (((𝜑𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝐶 ∈ (0[,]+∞))
4027, 39pm2.61dan 867 . . . . . 6 ((𝜑𝑘 ∈ {𝐴, 𝐵}) → 𝐶 ∈ (0[,]+∞))
41 eqid 2748 . . . . . 6 (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶) = (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)
4240, 41fmptd 6536 . . . . 5 (𝜑 → (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶):{𝐴, 𝐵}⟶(0[,]+∞))
4342adantr 472 . . . 4 ((𝜑𝐷 = +∞) → (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶):{𝐴, 𝐵}⟶(0[,]+∞))
44 id 22 . . . . . . 7 (𝐷 = +∞ → 𝐷 = +∞)
4544eqcomd 2754 . . . . . 6 (𝐷 = +∞ → +∞ = 𝐷)
4645adantl 473 . . . . 5 ((𝜑𝐷 = +∞) → +∞ = 𝐷)
47 prid1g 4427 . . . . . . . 8 (𝐷 ∈ (0[,]+∞) → 𝐷 ∈ {𝐷, 𝐸})
4824, 47syl 17 . . . . . . 7 (𝜑𝐷 ∈ {𝐷, 𝐸})
49 sge0pr.a . . . . . . . . 9 (𝜑𝐴𝑉)
50 sge0pr.b . . . . . . . . 9 (𝜑𝐵𝑊)
5149, 50, 41, 22, 35rnmptpr 39826 . . . . . . . 8 (𝜑 → ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶) = {𝐷, 𝐸})
5251eqcomd 2754 . . . . . . 7 (𝜑 → {𝐷, 𝐸} = ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
5348, 52eleqtrd 2829 . . . . . 6 (𝜑𝐷 ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
5453adantr 472 . . . . 5 ((𝜑𝐷 = +∞) → 𝐷 ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
5546, 54eqeltrd 2827 . . . 4 ((𝜑𝐷 = +∞) → +∞ ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
5621, 43, 55sge0pnfval 41062 . . 3 ((𝜑𝐷 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = +∞)
57 oveq1 6808 . . . 4 (𝐷 = +∞ → (𝐷 +𝑒 𝐸) = (+∞ +𝑒 𝐸))
5857adantl 473 . . 3 ((𝜑𝐷 = +∞) → (𝐷 +𝑒 𝐸) = (+∞ +𝑒 𝐸))
5919, 56, 583eqtr4d 2792 . 2 ((𝜑𝐷 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
601, 24sseldi 3730 . . . . . . . 8 (𝜑𝐷 ∈ ℝ*)
61 iccgelb 12394 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐷 ∈ (0[,]+∞)) → 0 ≤ 𝐷)
627, 11, 24, 61syl3anc 1463 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐷)
635, 7, 60, 9, 62xrltletrd 12156 . . . . . . . . 9 (𝜑 → -∞ < 𝐷)
645, 60, 63xrgtned 40005 . . . . . . . 8 (𝜑𝐷 ≠ -∞)
65 xaddpnf1 12221 . . . . . . . 8 ((𝐷 ∈ ℝ*𝐷 ≠ -∞) → (𝐷 +𝑒 +∞) = +∞)
6660, 64, 65syl2anc 696 . . . . . . 7 (𝜑 → (𝐷 +𝑒 +∞) = +∞)
6766eqcomd 2754 . . . . . 6 (𝜑 → +∞ = (𝐷 +𝑒 +∞))
6867adantr 472 . . . . 5 ((𝜑𝐸 = +∞) → +∞ = (𝐷 +𝑒 +∞))
6920a1i 11 . . . . . 6 ((𝜑𝐸 = +∞) → {𝐴, 𝐵} ∈ V)
7042adantr 472 . . . . . 6 ((𝜑𝐸 = +∞) → (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶):{𝐴, 𝐵}⟶(0[,]+∞))
71 id 22 . . . . . . . . 9 (𝐸 = +∞ → 𝐸 = +∞)
7271eqcomd 2754 . . . . . . . 8 (𝐸 = +∞ → +∞ = 𝐸)
7372adantl 473 . . . . . . 7 ((𝜑𝐸 = +∞) → +∞ = 𝐸)
74 prid2g 4428 . . . . . . . . . 10 (𝐸 ∈ (0[,]+∞) → 𝐸 ∈ {𝐷, 𝐸})
752, 74syl 17 . . . . . . . . 9 (𝜑𝐸 ∈ {𝐷, 𝐸})
7675, 52eleqtrd 2829 . . . . . . . 8 (𝜑𝐸 ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
7776adantr 472 . . . . . . 7 ((𝜑𝐸 = +∞) → 𝐸 ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
7873, 77eqeltrd 2827 . . . . . 6 ((𝜑𝐸 = +∞) → +∞ ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
7969, 70, 78sge0pnfval 41062 . . . . 5 ((𝜑𝐸 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = +∞)
80 oveq2 6809 . . . . . 6 (𝐸 = +∞ → (𝐷 +𝑒 𝐸) = (𝐷 +𝑒 +∞))
8180adantl 473 . . . . 5 ((𝜑𝐸 = +∞) → (𝐷 +𝑒 𝐸) = (𝐷 +𝑒 +∞))
8268, 79, 813eqtr4d 2792 . . . 4 ((𝜑𝐸 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
8382adantlr 753 . . 3 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ 𝐸 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
84 rge0ssre 12444 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
85 ax-resscn 10156 . . . . . . . 8 ℝ ⊆ ℂ
8684, 85sstri 3741 . . . . . . 7 (0[,)+∞) ⊆ ℂ
876a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = +∞) → 0 ∈ ℝ*)
8810a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = +∞) → +∞ ∈ ℝ*)
8960adantr 472 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = +∞) → 𝐷 ∈ ℝ*)
9062adantr 472 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = +∞) → 0 ≤ 𝐷)
91 pnfge 12128 . . . . . . . . . . . 12 (𝐷 ∈ ℝ*𝐷 ≤ +∞)
9260, 91syl 17 . . . . . . . . . . 11 (𝜑𝐷 ≤ +∞)
9392adantr 472 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐷 = +∞) → 𝐷 ≤ +∞)
9444necon3bi 2946 . . . . . . . . . . 11 𝐷 = +∞ → 𝐷 ≠ +∞)
9594adantl 473 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐷 = +∞) → 𝐷 ≠ +∞)
9689, 88, 93, 95xrleneltd 40006 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = +∞) → 𝐷 < +∞)
9787, 88, 89, 90, 96elicod 12388 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐷 = +∞) → 𝐷 ∈ (0[,)+∞))
9897adantr 472 . . . . . . 7 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐷 ∈ (0[,)+∞))
9986, 98sseldi 3730 . . . . . 6 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐷 ∈ ℂ)
1006a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐸 = +∞) → 0 ∈ ℝ*)
10110a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐸 = +∞) → +∞ ∈ ℝ*)
1023adantr 472 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ ℝ*)
10313adantr 472 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐸 = +∞) → 0 ≤ 𝐸)
104 pnfge 12128 . . . . . . . . . . . 12 (𝐸 ∈ ℝ*𝐸 ≤ +∞)
1053, 104syl 17 . . . . . . . . . . 11 (𝜑𝐸 ≤ +∞)
106105adantr 472 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ≤ +∞)
10771necon3bi 2946 . . . . . . . . . . 11 𝐸 = +∞ → 𝐸 ≠ +∞)
108107adantl 473 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ≠ +∞)
109102, 101, 106, 108xrleneltd 40006 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 < +∞)
110100, 101, 102, 103, 109elicod 12388 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ (0[,)+∞))
11186, 110sseldi 3730 . . . . . . 7 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ ℂ)
112111adantlr 753 . . . . . 6 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ ℂ)
11399, 112jca 555 . . . . 5 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ))
11449, 50jca 555 . . . . . 6 (𝜑 → (𝐴𝑉𝐵𝑊))
115114ad2antrr 764 . . . . 5 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → (𝐴𝑉𝐵𝑊))
116 sge0pr.ab . . . . . 6 (𝜑𝐴𝐵)
117116ad2antrr 764 . . . . 5 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐴𝐵)
11822, 35, 113, 115, 117sumpr 14647 . . . 4 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸))
119 prfi 8388 . . . . . 6 {𝐴, 𝐵} ∈ Fin
120119a1i 11 . . . . 5 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → {𝐴, 𝐵} ∈ Fin)
12122adantl 473 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷)
12297adantr 472 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ 𝑘 = 𝐴) → 𝐷 ∈ (0[,)+∞))
123121, 122eqeltrd 2827 . . . . . . 7 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ 𝑘 = 𝐴) → 𝐶 ∈ (0[,)+∞))
124123ad4ant14 1185 . . . . . 6 (((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ 𝑘 = 𝐴) → 𝐶 ∈ (0[,)+∞))
125 simp-4l 825 . . . . . . 7 (((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝜑)
126 simpllr 817 . . . . . . 7 (((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → ¬ 𝐸 = +∞)
12733adantll 752 . . . . . . 7 (((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝑘 = 𝐵)
128363adant2 1123 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐸 = +∞ ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸)
1291103adant3 1124 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐸 = +∞ ∧ 𝑘 = 𝐵) → 𝐸 ∈ (0[,)+∞))
130128, 129eqeltrd 2827 . . . . . . 7 ((𝜑 ∧ ¬ 𝐸 = +∞ ∧ 𝑘 = 𝐵) → 𝐶 ∈ (0[,)+∞))
131125, 126, 127, 130syl3anc 1463 . . . . . 6 (((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝐶 ∈ (0[,)+∞))
132124, 131pm2.61dan 867 . . . . 5 ((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) → 𝐶 ∈ (0[,)+∞))
133120, 132sge0fsummpt 41079 . . . 4 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = Σ𝑘 ∈ {𝐴, 𝐵}𝐶)
13484, 98sseldi 3730 . . . . 5 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐷 ∈ ℝ)
13584, 110sseldi 3730 . . . . . 6 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ ℝ)
136135adantlr 753 . . . . 5 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ ℝ)
137 rexadd 12227 . . . . 5 ((𝐷 ∈ ℝ ∧ 𝐸 ∈ ℝ) → (𝐷 +𝑒 𝐸) = (𝐷 + 𝐸))
138134, 136, 137syl2anc 696 . . . 4 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → (𝐷 +𝑒 𝐸) = (𝐷 + 𝐸))
139118, 133, 1383eqtr4d 2792 . . 3 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
14083, 139pm2.61dan 867 . 2 ((𝜑 ∧ ¬ 𝐷 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
14159, 140pm2.61dan 867 1 (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1072   = wceq 1620  wcel 2127  wne 2920  Vcvv 3328  {cpr 4311   class class class wbr 4792  cmpt 4869  ran crn 5255  wf 6033  cfv 6037  (class class class)co 6801  Fincfn 8109  cc 10097  cr 10098  0cc0 10099   + caddc 10102  +∞cpnf 10234  -∞cmnf 10235  *cxr 10236   < clt 10237  cle 10238   +𝑒 cxad 12108  [,)cico 12341  [,]cicc 12342  Σcsu 14586  Σ^csumge0 41051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-inf2 8699  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-pre-sup 10177
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-fal 1626  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-se 5214  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-isom 6046  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8501  df-oi 8568  df-card 8926  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-3 11243  df-n0 11456  df-z 11541  df-uz 11851  df-rp 11997  df-xadd 12111  df-ico 12345  df-icc 12346  df-fz 12491  df-fzo 12631  df-seq 12967  df-exp 13026  df-hash 13283  df-cj 14009  df-re 14010  df-im 14011  df-sqrt 14145  df-abs 14146  df-clim 14389  df-sum 14587  df-sumge0 41052
This theorem is referenced by:  sge0prle  41090  meadjun  41151  ovnsubadd2lem  41334
  Copyright terms: Public domain W3C validator