Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0reuzb Structured version   Visualization version   GIF version

Theorem sge0reuzb 39993
 Description: Value of the generalized sum of uniformly bounded nonnegative reals, when the domain is a set of upper integers. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
sge0reuzb.k 𝑘𝜑
sge0reuzb.p 𝑥𝜑
sge0reuzb.m (𝜑𝑀 ∈ ℤ)
sge0reuzb.z 𝑍 = (ℤ𝑀)
sge0reuzb.b ((𝜑𝑘𝑍) → 𝐵 ∈ (0[,)+∞))
sge0reuzb.x (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥)
Assertion
Ref Expression
sge0reuzb (𝜑 → (Σ^‘(𝑘𝑍𝐵)) = sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ, < ))
Distinct variable groups:   𝐵,𝑛,𝑥   𝑘,𝑀,𝑛,𝑥   𝑘,𝑍,𝑛,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑘)   𝐵(𝑘)

Proof of Theorem sge0reuzb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sge0reuzb.k . . 3 𝑘𝜑
2 sge0reuzb.m . . 3 (𝜑𝑀 ∈ ℤ)
3 sge0reuzb.z . . 3 𝑍 = (ℤ𝑀)
4 sge0reuzb.b . . 3 ((𝜑𝑘𝑍) → 𝐵 ∈ (0[,)+∞))
51, 2, 3, 4sge0reuz 39992 . 2 (𝜑 → (Σ^‘(𝑘𝑍𝐵)) = sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ))
6 nfv 1840 . . . 4 𝑛𝜑
7 eqid 2621 . . . 4 (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) = (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)
8 nfv 1840 . . . . . 6 𝑘 𝑛𝑍
91, 8nfan 1825 . . . . 5 𝑘(𝜑𝑛𝑍)
10 fzfid 12719 . . . . 5 ((𝜑𝑛𝑍) → (𝑀...𝑛) ∈ Fin)
11 elfzuz 12287 . . . . . . . . 9 (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ𝑀))
1211, 3syl6eleqr 2709 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑛) → 𝑘𝑍)
1312adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑛)) → 𝑘𝑍)
14 rge0ssre 12229 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
1514, 4sseldi 3585 . . . . . . 7 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
1613, 15syldan 487 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑛)) → 𝐵 ∈ ℝ)
1716adantlr 750 . . . . 5 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝐵 ∈ ℝ)
189, 10, 17fsumreclf 39235 . . . 4 ((𝜑𝑛𝑍) → Σ𝑘 ∈ (𝑀...𝑛)𝐵 ∈ ℝ)
196, 7, 18rnmptssd 38882 . . 3 (𝜑 → ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ⊆ ℝ)
20 uzid 11653 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
212, 20syl 17 . . . . . . 7 (𝜑𝑀 ∈ (ℤ𝑀))
2221, 3syl6eleqr 2709 . . . . . 6 (𝜑𝑀𝑍)
23 eqidd 2622 . . . . . 6 (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ (𝑀...𝑀)𝐵)
24 oveq2 6618 . . . . . . . . 9 (𝑛 = 𝑀 → (𝑀...𝑛) = (𝑀...𝑀))
2524sumeq1d 14372 . . . . . . . 8 (𝑛 = 𝑀 → Σ𝑘 ∈ (𝑀...𝑛)𝐵 = Σ𝑘 ∈ (𝑀...𝑀)𝐵)
2625eqeq2d 2631 . . . . . . 7 (𝑛 = 𝑀 → (Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ (𝑀...𝑛)𝐵 ↔ Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ (𝑀...𝑀)𝐵))
2726rspcev 3298 . . . . . 6 ((𝑀𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ (𝑀...𝑀)𝐵) → ∃𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
2822, 23, 27syl2anc 692 . . . . 5 (𝜑 → ∃𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
29 sumex 14359 . . . . . 6 Σ𝑘 ∈ (𝑀...𝑀)𝐵 ∈ V
3029a1i 11 . . . . 5 (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)𝐵 ∈ V)
317, 28, 30elrnmptd 38863 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)𝐵 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵))
32 ne0i 3902 . . . 4 𝑘 ∈ (𝑀...𝑀)𝐵 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) → ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ≠ ∅)
3331, 32syl 17 . . 3 (𝜑 → ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ≠ ∅)
34 sge0reuzb.x . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥)
35 sge0reuzb.p . . . . 5 𝑥𝜑
36 vex 3192 . . . . . . . . . . . 12 𝑦 ∈ V
377elrnmpt 5337 . . . . . . . . . . . 12 (𝑦 ∈ V → (𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ↔ ∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵))
3836, 37ax-mp 5 . . . . . . . . . . 11 (𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ↔ ∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
3938biimpi 206 . . . . . . . . . 10 (𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) → ∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
4039adantl 482 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥) ∧ 𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)) → ∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
41 nfv 1840 . . . . . . . . . . . 12 𝑛(𝜑𝑥 ∈ ℝ)
42 nfra1 2936 . . . . . . . . . . . 12 𝑛𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥
4341, 42nfan 1825 . . . . . . . . . . 11 𝑛((𝜑𝑥 ∈ ℝ) ∧ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥)
44 nfv 1840 . . . . . . . . . . 11 𝑛 𝑦𝑥
45 rspa 2925 . . . . . . . . . . . . . 14 ((∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥𝑛𝑍) → Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥)
46 simpr 477 . . . . . . . . . . . . . . . 16 ((Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) → 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵)
47 simpl 473 . . . . . . . . . . . . . . . 16 ((Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) → Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥)
4846, 47eqbrtrd 4640 . . . . . . . . . . . . . . 15 ((Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵) → 𝑦𝑥)
4948ex 450 . . . . . . . . . . . . . 14 𝑘 ∈ (𝑀...𝑛)𝐵𝑥 → (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦𝑥))
5045, 49syl 17 . . . . . . . . . . . . 13 ((∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥𝑛𝑍) → (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦𝑥))
5150ex 450 . . . . . . . . . . . 12 (∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥 → (𝑛𝑍 → (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦𝑥)))
5251adantl 482 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥) → (𝑛𝑍 → (𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦𝑥)))
5343, 44, 52rexlimd 3020 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥) → (∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦𝑥))
5453adantr 481 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥) ∧ 𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)) → (∃𝑛𝑍 𝑦 = Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑦𝑥))
5540, 54mpd 15 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥) ∧ 𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)) → 𝑦𝑥)
5655ralrimiva 2961 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥) → ∀𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑥)
5756ex 450 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥 → ∀𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑥))
5857ex 450 . . . . 5 (𝜑 → (𝑥 ∈ ℝ → (∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥 → ∀𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑥)))
5935, 58reximdai 3007 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑛𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑥))
6034, 59mpd 15 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑥)
61 supxrre 12107 . . 3 ((ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ⊆ ℝ ∧ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵)𝑦𝑥) → sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ) = sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ, < ))
6219, 33, 60, 61syl3anc 1323 . 2 (𝜑 → sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < ) = sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ, < ))
635, 62eqtrd 2655 1 (𝜑 → (Σ^‘(𝑘𝑍𝐵)) = sup(ran (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ, < ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480  Ⅎwnf 1705   ∈ wcel 1987   ≠ wne 2790  ∀wral 2907  ∃wrex 2908  Vcvv 3189   ⊆ wss 3559  ∅c0 3896   class class class wbr 4618   ↦ cmpt 4678  ran crn 5080  ‘cfv 5852  (class class class)co 6610  supcsup 8297  ℝcr 9886  0cc0 9887  +∞cpnf 10022  ℝ*cxr 10024   < clt 10025   ≤ cle 10026  ℤcz 11328  ℤ≥cuz 11638  [,)cico 12126  ...cfz 12275  Σcsu 14357  Σ^csumge0 39907 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-sup 8299  df-oi 8366  df-card 8716  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-n0 11244  df-z 11329  df-uz 11639  df-rp 11784  df-ico 12130  df-icc 12131  df-fz 12276  df-fzo 12414  df-seq 12749  df-exp 12808  df-hash 13065  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-clim 14160  df-sum 14358  df-sumge0 39908 This theorem is referenced by:  meaiuninclem  40025
 Copyright terms: Public domain W3C validator