Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0splitsn Structured version   Visualization version   GIF version

Theorem sge0splitsn 42730
Description: Separate out a term in a generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
sge0splitsn.ph 𝑘𝜑
sge0splitsn.a (𝜑𝐴𝑉)
sge0splitsn.b (𝜑𝐵𝑊)
sge0splitsn.n (𝜑 → ¬ 𝐵𝐴)
sge0splitsn.c ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
sge0splitsn.d (𝑘 = 𝐵𝐶 = 𝐷)
sge0splitsn.e (𝜑𝐷 ∈ (0[,]+∞))
Assertion
Ref Expression
sge0splitsn (𝜑 → (Σ^‘(𝑘 ∈ (𝐴 ∪ {𝐵}) ↦ 𝐶)) = ((Σ^‘(𝑘𝐴𝐶)) +𝑒 𝐷))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐷,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem sge0splitsn
StepHypRef Expression
1 sge0splitsn.ph . . 3 𝑘𝜑
2 sge0splitsn.a . . 3 (𝜑𝐴𝑉)
3 snfi 8596 . . . . 5 {𝐵} ∈ Fin
43a1i 11 . . . 4 (𝜑 → {𝐵} ∈ Fin)
54elexd 3516 . . 3 (𝜑 → {𝐵} ∈ V)
6 sge0splitsn.n . . . 4 (𝜑 → ¬ 𝐵𝐴)
7 disjsn 4649 . . . 4 ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝐴)
86, 7sylibr 236 . . 3 (𝜑 → (𝐴 ∩ {𝐵}) = ∅)
9 sge0splitsn.c . . 3 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
10 elsni 4586 . . . . 5 (𝑘 ∈ {𝐵} → 𝑘 = 𝐵)
11 sge0splitsn.d . . . . . 6 (𝑘 = 𝐵𝐶 = 𝐷)
1211adantl 484 . . . . 5 ((𝜑𝑘 = 𝐵) → 𝐶 = 𝐷)
1310, 12sylan2 594 . . . 4 ((𝜑𝑘 ∈ {𝐵}) → 𝐶 = 𝐷)
14 sge0splitsn.e . . . . 5 (𝜑𝐷 ∈ (0[,]+∞))
1514adantr 483 . . . 4 ((𝜑𝑘 ∈ {𝐵}) → 𝐷 ∈ (0[,]+∞))
1613, 15eqeltrd 2915 . . 3 ((𝜑𝑘 ∈ {𝐵}) → 𝐶 ∈ (0[,]+∞))
171, 2, 5, 8, 9, 16sge0splitmpt 42700 . 2 (𝜑 → (Σ^‘(𝑘 ∈ (𝐴 ∪ {𝐵}) ↦ 𝐶)) = ((Σ^‘(𝑘𝐴𝐶)) +𝑒^‘(𝑘 ∈ {𝐵} ↦ 𝐶))))
18 sge0splitsn.b . . . 4 (𝜑𝐵𝑊)
191, 18, 14, 11sge0snmptf 42726 . . 3 (𝜑 → (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶)) = 𝐷)
2019oveq2d 7174 . 2 (𝜑 → ((Σ^‘(𝑘𝐴𝐶)) +𝑒^‘(𝑘 ∈ {𝐵} ↦ 𝐶))) = ((Σ^‘(𝑘𝐴𝐶)) +𝑒 𝐷))
2117, 20eqtrd 2858 1 (𝜑 → (Σ^‘(𝑘 ∈ (𝐴 ∪ {𝐵}) ↦ 𝐶)) = ((Σ^‘(𝑘𝐴𝐶)) +𝑒 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wnf 1784  wcel 2114  Vcvv 3496  cun 3936  cin 3937  c0 4293  {csn 4569  cmpt 5148  cfv 6357  (class class class)co 7158  Fincfn 8511  0cc0 10539  +∞cpnf 10674   +𝑒 cxad 12508  [,]cicc 12744  Σ^csumge0 42651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-xadd 12511  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-sumge0 42652
This theorem is referenced by:  hoidmv1lelem2  42881
  Copyright terms: Public domain W3C validator