Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0xaddlem2 Structured version   Visualization version   GIF version

Theorem sge0xaddlem2 39984
Description: The extended addition of two generalized sums of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
sge0xaddlem2.a (𝜑𝐴𝑉)
sge0xaddlem2.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
sge0xaddlem2.c ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,)+∞))
sge0xaddlem2.sb (𝜑 → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
sge0xaddlem2.sc (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
Assertion
Ref Expression
sge0xaddlem2 (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝑉(𝑘)

Proof of Theorem sge0xaddlem2
Dummy variables 𝑒 𝑗 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1840 . . 3 𝑘𝜑
2 sge0xaddlem2.a . . 3 (𝜑𝐴𝑉)
3 0xr 10038 . . . . 5 0 ∈ ℝ*
43a1i 11 . . . 4 ((𝜑𝑘𝐴) → 0 ∈ ℝ*)
5 pnfxr 10044 . . . . 5 +∞ ∈ ℝ*
65a1i 11 . . . 4 ((𝜑𝑘𝐴) → +∞ ∈ ℝ*)
7 rge0ssre 12230 . . . . . . 7 (0[,)+∞) ⊆ ℝ
8 sge0xaddlem2.b . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
97, 8sseldi 3585 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
10 sge0xaddlem2.c . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,)+∞))
117, 10sseldi 3585 . . . . . 6 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
129, 11readdcld 10021 . . . . 5 ((𝜑𝑘𝐴) → (𝐵 + 𝐶) ∈ ℝ)
1312rexrd 10041 . . . 4 ((𝜑𝑘𝐴) → (𝐵 + 𝐶) ∈ ℝ*)
14 icossicc 12210 . . . . . . 7 (0[,)+∞) ⊆ (0[,]+∞)
1514, 8sseldi 3585 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
16 xrge0ge0 39058 . . . . . 6 (𝐵 ∈ (0[,]+∞) → 0 ≤ 𝐵)
1715, 16syl 17 . . . . 5 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
1814, 10sseldi 3585 . . . . . 6 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
19 xrge0ge0 39058 . . . . . 6 (𝐶 ∈ (0[,]+∞) → 0 ≤ 𝐶)
2018, 19syl 17 . . . . 5 ((𝜑𝑘𝐴) → 0 ≤ 𝐶)
219, 11, 17, 20addge0d 10555 . . . 4 ((𝜑𝑘𝐴) → 0 ≤ (𝐵 + 𝐶))
2212ltpnfd 11907 . . . 4 ((𝜑𝑘𝐴) → (𝐵 + 𝐶) < +∞)
234, 6, 13, 21, 22elicod 12174 . . 3 ((𝜑𝑘𝐴) → (𝐵 + 𝐶) ∈ (0[,)+∞))
241, 2, 23sge0revalmpt 39928 . 2 (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 + 𝐶))) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ))
25 rexadd 12014 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 +𝑒 𝐶) = (𝐵 + 𝐶))
269, 11, 25syl2anc 692 . . . 4 ((𝜑𝑘𝐴) → (𝐵 +𝑒 𝐶) = (𝐵 + 𝐶))
2726mpteq2dva 4709 . . 3 (𝜑 → (𝑘𝐴 ↦ (𝐵 +𝑒 𝐶)) = (𝑘𝐴 ↦ (𝐵 + 𝐶)))
2827fveq2d 6157 . 2 (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = (Σ^‘(𝑘𝐴 ↦ (𝐵 + 𝐶))))
29 sge0xaddlem2.sb . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
30 sge0xaddlem2.sc . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
31 rexadd 12014 . . . 4 (((Σ^‘(𝑘𝐴𝐵)) ∈ ℝ ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))))
3229, 30, 31syl2anc 692 . . 3 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))))
331, 2, 8sge0revalmpt 39928 . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ))
341, 2, 10sge0revalmpt 39928 . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) = sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < ))
3533, 34oveq12d 6628 . . 3 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) = (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )))
3633eqcomd 2627 . . . . . . 7 (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) = (Σ^‘(𝑘𝐴𝐵)))
3736, 29eqeltrd 2698 . . . . . 6 (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) ∈ ℝ)
3834, 30eqeltrrd 2699 . . . . . 6 (𝜑 → sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < ) ∈ ℝ)
3937, 38readdcld 10021 . . . . 5 (𝜑 → (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) ∈ ℝ)
4039rexrd 10041 . . . 4 (𝜑 → (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) ∈ ℝ*)
41 elinel2 3783 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin)
4241adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin)
43 simpll 789 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝜑)
44 elpwinss 38734 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝐴)
4544adantr 481 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑥) → 𝑥𝐴)
46 simpr 477 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑥) → 𝑘𝑥)
4745, 46sseldd 3588 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑥) → 𝑘𝐴)
4847adantll 749 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝐴)
4943, 48, 9syl2anc 692 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐵 ∈ ℝ)
5043, 48, 11syl2anc 692 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐶 ∈ ℝ)
5149, 50readdcld 10021 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → (𝐵 + 𝐶) ∈ ℝ)
5242, 51fsumrecl 14406 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 (𝐵 + 𝐶) ∈ ℝ)
5352rexrd 10041 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 (𝐵 + 𝐶) ∈ ℝ*)
5453ralrimiva 2961 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑥 (𝐵 + 𝐶) ∈ ℝ*)
55 eqid 2621 . . . . . . 7 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶))
5655rnmptss 6353 . . . . . 6 (∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑥 (𝐵 + 𝐶) ∈ ℝ* → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) ⊆ ℝ*)
5754, 56syl 17 . . . . 5 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) ⊆ ℝ*)
58 supxrcl 12096 . . . . 5 (ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) ⊆ ℝ* → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ*)
5957, 58syl 17 . . . 4 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ*)
6035eqcomd 2627 . . . . . . 7 (𝜑 → (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) = ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))))
6160adantr 481 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) = ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))))
62 nfv 1840 . . . . . . . 8 𝑘(𝜑𝑒 ∈ ℝ+)
632adantr 481 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → 𝐴𝑉)
6415adantlr 750 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
65 rphalfcl 11810 . . . . . . . . 9 (𝑒 ∈ ℝ+ → (𝑒 / 2) ∈ ℝ+)
6665adantl 482 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → (𝑒 / 2) ∈ ℝ+)
6729adantr 481 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
6862, 63, 64, 66, 67sge0ltfirpmpt2 39976 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → ∃𝑢 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2)))
6918adantlr 750 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
7030adantr 481 . . . . . . . . . . . 12 ((𝜑𝑒 ∈ ℝ+) → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
7162, 63, 69, 66, 70sge0ltfirpmpt2 39976 . . . . . . . . . . 11 ((𝜑𝑒 ∈ ℝ+) → ∃𝑣 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2)))
72713ad2ant1 1080 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) → ∃𝑣 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2)))
73633ad2ant1 1080 . . . . . . . . . . . . . . 15 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) → 𝐴𝑉)
74733ad2ant1 1080 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → 𝐴𝑉)
75 simpl1l 1110 . . . . . . . . . . . . . . . 16 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑗𝐴) → 𝜑)
76753ad2antl1 1221 . . . . . . . . . . . . . . 15 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) ∧ 𝑗𝐴) → 𝜑)
77 simpr 477 . . . . . . . . . . . . . . 15 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) ∧ 𝑗𝐴) → 𝑗𝐴)
78 nfv 1840 . . . . . . . . . . . . . . . . 17 𝑘(𝜑𝑗𝐴)
79 nfcsb1v 3534 . . . . . . . . . . . . . . . . . 18 𝑘𝑗 / 𝑘𝐵
8079nfel1 2775 . . . . . . . . . . . . . . . . 17 𝑘𝑗 / 𝑘𝐵 ∈ (0[,)+∞)
8178, 80nfim 1822 . . . . . . . . . . . . . . . 16 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))
82 eleq1 2686 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
8382anbi2d 739 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → ((𝜑𝑘𝐴) ↔ (𝜑𝑗𝐴)))
84 csbeq1a 3527 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
8584eleq1d 2683 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → (𝐵 ∈ (0[,)+∞) ↔ 𝑗 / 𝑘𝐵 ∈ (0[,)+∞)))
8683, 85imbi12d 334 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞)) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))))
8781, 86, 8chvar 2261 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))
8876, 77, 87syl2anc 692 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))
89 nfcsb1v 3534 . . . . . . . . . . . . . . . . . 18 𝑘𝑗 / 𝑘𝐶
9089nfel1 2775 . . . . . . . . . . . . . . . . 17 𝑘𝑗 / 𝑘𝐶 ∈ (0[,)+∞)
9178, 90nfim 1822 . . . . . . . . . . . . . . . 16 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))
92 csbeq1a 3527 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗𝐶 = 𝑗 / 𝑘𝐶)
9392eleq1d 2683 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → (𝐶 ∈ (0[,)+∞) ↔ 𝑗 / 𝑘𝐶 ∈ (0[,)+∞)))
9483, 93imbi12d 334 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐶 ∈ (0[,)+∞)) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))))
9591, 94, 10chvar 2261 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))
9676, 77, 95syl2anc 692 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))
97 simp11r 1171 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → 𝑒 ∈ ℝ+)
98 simp12 1090 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → 𝑢 ∈ (𝒫 𝐴 ∩ Fin))
99 elpwinss 38734 . . . . . . . . . . . . . . 15 (𝑢 ∈ (𝒫 𝐴 ∩ Fin) → 𝑢𝐴)
10098, 99syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → 𝑢𝐴)
101 elinel2 3783 . . . . . . . . . . . . . . . 16 (𝑢 ∈ (𝒫 𝐴 ∩ Fin) → 𝑢 ∈ Fin)
1021013ad2ant2 1081 . . . . . . . . . . . . . . 15 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) → 𝑢 ∈ Fin)
1031023ad2ant1 1080 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → 𝑢 ∈ Fin)
104 simp2 1060 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → 𝑣 ∈ (𝒫 𝐴 ∩ Fin))
105 elpwinss 38734 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝒫 𝐴 ∩ Fin) → 𝑣𝐴)
106104, 105syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → 𝑣𝐴)
107 elinel2 3783 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝒫 𝐴 ∩ Fin) → 𝑣 ∈ Fin)
1081073ad2ant2 1081 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → 𝑣 ∈ Fin)
109 simp13 1091 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2)))
110 nfcv 2761 . . . . . . . . . . . . . . . . . . 19 𝑗𝐵
111110, 79, 84cbvmpt 4714 . . . . . . . . . . . . . . . . . 18 (𝑘𝐴𝐵) = (𝑗𝐴𝑗 / 𝑘𝐵)
112111fveq2i 6156 . . . . . . . . . . . . . . . . 17 ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵))
113 nfcv 2761 . . . . . . . . . . . . . . . . . . 19 𝑗𝑢
114 nfcv 2761 . . . . . . . . . . . . . . . . . . 19 𝑘𝑢
11584, 113, 114, 110, 79cbvsum 14367 . . . . . . . . . . . . . . . . . 18 Σ𝑘𝑢 𝐵 = Σ𝑗𝑢 𝑗 / 𝑘𝐵
116115oveq1i 6620 . . . . . . . . . . . . . . . . 17 𝑘𝑢 𝐵 + (𝑒 / 2)) = (Σ𝑗𝑢 𝑗 / 𝑘𝐵 + (𝑒 / 2))
117112, 116breq12i 4627 . . . . . . . . . . . . . . . 16 ((Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2)) ↔ (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) < (Σ𝑗𝑢 𝑗 / 𝑘𝐵 + (𝑒 / 2)))
118117biimpi 206 . . . . . . . . . . . . . . 15 ((Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2)) → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) < (Σ𝑗𝑢 𝑗 / 𝑘𝐵 + (𝑒 / 2)))
119109, 118syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) < (Σ𝑗𝑢 𝑗 / 𝑘𝐵 + (𝑒 / 2)))
120 simp3 1061 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2)))
121 nfcv 2761 . . . . . . . . . . . . . . . . . . 19 𝑗𝐶
122121, 89, 92cbvmpt 4714 . . . . . . . . . . . . . . . . . 18 (𝑘𝐴𝐶) = (𝑗𝐴𝑗 / 𝑘𝐶)
123122fveq2i 6156 . . . . . . . . . . . . . . . . 17 ^‘(𝑘𝐴𝐶)) = (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶))
124 nfcv 2761 . . . . . . . . . . . . . . . . . . 19 𝑗𝑣
125 nfcv 2761 . . . . . . . . . . . . . . . . . . 19 𝑘𝑣
12692, 124, 125, 121, 89cbvsum 14367 . . . . . . . . . . . . . . . . . 18 Σ𝑘𝑣 𝐶 = Σ𝑗𝑣 𝑗 / 𝑘𝐶
127126oveq1i 6620 . . . . . . . . . . . . . . . . 17 𝑘𝑣 𝐶 + (𝑒 / 2)) = (Σ𝑗𝑣 𝑗 / 𝑘𝐶 + (𝑒 / 2))
128123, 127breq12i 4627 . . . . . . . . . . . . . . . 16 ((Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2)) ↔ (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶)) < (Σ𝑗𝑣 𝑗 / 𝑘𝐶 + (𝑒 / 2)))
129128biimpi 206 . . . . . . . . . . . . . . 15 ((Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2)) → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶)) < (Σ𝑗𝑣 𝑗 / 𝑘𝐶 + (𝑒 / 2)))
130120, 129syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶)) < (Σ𝑗𝑣 𝑗 / 𝑘𝐶 + (𝑒 / 2)))
131 simp11l 1170 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → 𝜑)
13284, 92oveq12d 6628 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑗 → (𝐵 + 𝐶) = (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶))
133 nfcv 2761 . . . . . . . . . . . . . . . . . . . . . . 23 𝑗𝑥
134 nfcv 2761 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘𝑥
135 nfcv 2761 . . . . . . . . . . . . . . . . . . . . . . 23 𝑗(𝐵 + 𝐶)
136 nfcv 2761 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘 +
13779, 136, 89nfov 6636 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘(𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)
138132, 133, 134, 135, 137cbvsum 14367 . . . . . . . . . . . . . . . . . . . . . 22 Σ𝑘𝑥 (𝐵 + 𝐶) = Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)
139138mpteq2i 4706 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶))
140139rneqi 5317 . . . . . . . . . . . . . . . . . . . 20 ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) = ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶))
141140supeq1i 8305 . . . . . . . . . . . . . . . . . . 19 sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)), ℝ*, < )
142141eqcomi 2630 . . . . . . . . . . . . . . . . . 18 sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < )
143142a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ))
144143, 24eqtr4d 2658 . . . . . . . . . . . . . . . 16 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)), ℝ*, < ) = (Σ^‘(𝑘𝐴 ↦ (𝐵 + 𝐶))))
145 ge0xaddcl 12236 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐵 +𝑒 𝐶) ∈ (0[,]+∞))
14615, 18, 145syl2anc 692 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐴) → (𝐵 +𝑒 𝐶) ∈ (0[,]+∞))
14726, 146eqeltrrd 2699 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐴) → (𝐵 + 𝐶) ∈ (0[,]+∞))
1481, 2, 147sge0clmpt 39975 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 + 𝐶))) ∈ (0[,]+∞))
149144, 148eqeltrd 2698 . . . . . . . . . . . . . . 15 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)), ℝ*, < ) ∈ (0[,]+∞))
150131, 149syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)), ℝ*, < ) ∈ (0[,]+∞))
151112, 29syl5eqelr 2703 . . . . . . . . . . . . . . 15 (𝜑 → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) ∈ ℝ)
152131, 151syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) ∈ ℝ)
153123, 30syl5eqelr 2703 . . . . . . . . . . . . . . 15 (𝜑 → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶)) ∈ ℝ)
154131, 153syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶)) ∈ ℝ)
15574, 88, 96, 97, 100, 103, 106, 108, 119, 130, 150, 152, 154sge0xaddlem1 39983 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → ((Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) + (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)), ℝ*, < ) +𝑒 𝑒))
156112, 123oveq12i 6622 . . . . . . . . . . . . . 14 ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) = ((Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) + (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶)))
157141oveq1i 6620 . . . . . . . . . . . . . 14 (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝑒) = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)), ℝ*, < ) +𝑒 𝑒)
158156, 157breq12i 4627 . . . . . . . . . . . . 13 (((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝑒) ↔ ((Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) + (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)), ℝ*, < ) +𝑒 𝑒))
159155, 158sylibr 224 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝑒))
1601593exp 1261 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) → (𝑣 ∈ (𝒫 𝐴 ∩ Fin) → ((Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2)) → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝑒))))
161160rexlimdv 3024 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) → (∃𝑣 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2)) → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝑒)))
16272, 161mpd 15 . . . . . . . . 9 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝑒))
1631623exp 1261 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → (𝑢 ∈ (𝒫 𝐴 ∩ Fin) → ((Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2)) → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝑒))))
164163rexlimdv 3024 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → (∃𝑢 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2)) → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝑒)))
16568, 164mpd 15 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝑒))
16661, 165eqbrtrd 4640 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝑒))
16740, 59, 166xrlexaddrp 39063 . . . 4 (𝜑 → (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) ≤ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ))
16824eqcomd 2627 . . . . 5 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = (Σ^‘(𝑘𝐴 ↦ (𝐵 + 𝐶))))
16943, 48, 23syl2anc 692 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → (𝐵 + 𝐶) ∈ (0[,)+∞))
17042, 169sge0fsummpt 39940 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑘𝑥 ↦ (𝐵 + 𝐶))) = Σ𝑘𝑥 (𝐵 + 𝐶))
17149recnd 10020 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐵 ∈ ℂ)
17250recnd 10020 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐶 ∈ ℂ)
17342, 171, 172fsumadd 14411 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 (𝐵 + 𝐶) = (Σ𝑘𝑥 𝐵 + Σ𝑘𝑥 𝐶))
174170, 173eqtrd 2655 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑘𝑥 ↦ (𝐵 + 𝐶))) = (Σ𝑘𝑥 𝐵 + Σ𝑘𝑥 𝐶))
17542, 49fsumrecl 14406 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 𝐵 ∈ ℝ)
17642, 50fsumrecl 14406 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 𝐶 ∈ ℝ)
17737adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) ∈ ℝ)
17838adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < ) ∈ ℝ)
179 elinel2 3783 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
180179adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
181 simpll 789 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝜑)
182 elpwinss 38734 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
183182adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑦) → 𝑦𝐴)
184 simpr 477 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑦) → 𝑘𝑦)
185183, 184sseldd 3588 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑦) → 𝑘𝐴)
186185adantll 749 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘𝐴)
187181, 186, 9syl2anc 692 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝐵 ∈ ℝ)
188180, 187fsumrecl 14406 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 𝐵 ∈ ℝ)
189188rexrd 10041 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 𝐵 ∈ ℝ*)
190189ralrimiva 2961 . . . . . . . . . . . 12 (𝜑 → ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑦 𝐵 ∈ ℝ*)
191 eqid 2621 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵) = (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵)
192191rnmptss 6353 . . . . . . . . . . . 12 (∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑦 𝐵 ∈ ℝ* → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵) ⊆ ℝ*)
193190, 192syl 17 . . . . . . . . . . 11 (𝜑 → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵) ⊆ ℝ*)
194193adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵) ⊆ ℝ*)
195 simpr 477 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
196 eqidd 2622 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 𝐵 = Σ𝑘𝑥 𝐵)
197 sumeq1 14361 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → Σ𝑘𝑦 𝐵 = Σ𝑘𝑥 𝐵)
198197eqeq2d 2631 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (Σ𝑘𝑥 𝐵 = Σ𝑘𝑦 𝐵 ↔ Σ𝑘𝑥 𝐵 = Σ𝑘𝑥 𝐵))
199198rspcev 3298 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ Σ𝑘𝑥 𝐵 = Σ𝑘𝑥 𝐵) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑥 𝐵 = Σ𝑘𝑦 𝐵)
200195, 196, 199syl2anc 692 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑥 𝐵 = Σ𝑘𝑦 𝐵)
201175elexd 3203 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 𝐵 ∈ V)
202191, 200, 201elrnmptd 38871 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 𝐵 ∈ ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵))
203 supxrub 12105 . . . . . . . . . 10 ((ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵) ⊆ ℝ* ∧ Σ𝑘𝑥 𝐵 ∈ ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵)) → Σ𝑘𝑥 𝐵 ≤ sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ))
204194, 202, 203syl2anc 692 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 𝐵 ≤ sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ))
205 nfv 1840 . . . . . . . . . . . 12 𝑧𝜑
206 eqid 2621 . . . . . . . . . . . 12 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶)
207 elinel2 3783 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧 ∈ Fin)
208207adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑧 ∈ Fin)
209 simpll 789 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑧) → 𝜑)
210 elpwinss 38734 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧𝐴)
211210adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑧) → 𝑧𝐴)
212 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑧) → 𝑘𝑧)
213211, 212sseldd 3588 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑧) → 𝑘𝐴)
214213adantll 749 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑧) → 𝑘𝐴)
215209, 214, 11syl2anc 692 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑧) → 𝐶 ∈ ℝ)
216208, 215fsumrecl 14406 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑧 𝐶 ∈ ℝ)
217216rexrd 10041 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑧 𝐶 ∈ ℝ*)
218205, 206, 217rnmptssd 38890 . . . . . . . . . . 11 (𝜑 → ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶) ⊆ ℝ*)
219218adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶) ⊆ ℝ*)
220 eqidd 2622 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 𝐶 = Σ𝑘𝑥 𝐶)
221 sumeq1 14361 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → Σ𝑘𝑧 𝐶 = Σ𝑘𝑥 𝐶)
222221eqeq2d 2631 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (Σ𝑘𝑥 𝐶 = Σ𝑘𝑧 𝐶 ↔ Σ𝑘𝑥 𝐶 = Σ𝑘𝑥 𝐶))
223222rspcev 3298 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ Σ𝑘𝑥 𝐶 = Σ𝑘𝑥 𝐶) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑥 𝐶 = Σ𝑘𝑧 𝐶)
224195, 220, 223syl2anc 692 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑥 𝐶 = Σ𝑘𝑧 𝐶)
225176elexd 3203 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 𝐶 ∈ V)
226206, 224, 225elrnmptd 38871 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 𝐶 ∈ ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶))
227 supxrub 12105 . . . . . . . . . 10 ((ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶) ⊆ ℝ* ∧ Σ𝑘𝑥 𝐶 ∈ ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶)) → Σ𝑘𝑥 𝐶 ≤ sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < ))
228219, 226, 227syl2anc 692 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 𝐶 ≤ sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < ))
229175, 176, 177, 178, 204, 228le2addd 10598 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ𝑘𝑥 𝐵 + Σ𝑘𝑥 𝐶) ≤ (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )))
230174, 229eqbrtrd 4640 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑘𝑥 ↦ (𝐵 + 𝐶))) ≤ (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )))
231230ralrimiva 2961 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝑥 ↦ (𝐵 + 𝐶))) ≤ (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )))
2321, 2, 147, 40sge0lefimpt 39973 . . . . . 6 (𝜑 → ((Σ^‘(𝑘𝐴 ↦ (𝐵 + 𝐶))) ≤ (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) ↔ ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝑥 ↦ (𝐵 + 𝐶))) ≤ (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < ))))
233231, 232mpbird 247 . . . . 5 (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 + 𝐶))) ≤ (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )))
234168, 233eqbrtrd 4640 . . . 4 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ≤ (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )))
23540, 59, 167, 234xrletrid 11938 . . 3 (𝜑 → (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ))
23632, 35, 2353eqtrd 2659 . 2 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ))
23724, 28, 2363eqtr4d 2665 1 (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  wrex 2908  Vcvv 3189  csb 3518  cin 3558  wss 3559  𝒫 cpw 4135   class class class wbr 4618  cmpt 4678  ran crn 5080  cfv 5852  (class class class)co 6610  Fincfn 7907  supcsup 8298  cr 9887  0cc0 9888   + caddc 9891  +∞cpnf 10023  *cxr 10025   < clt 10026  cle 10027   / cdiv 10636  2c2 11022  +crp 11784   +𝑒 cxad 11896  [,)cico 12127  [,]cicc 12128  Σcsu 14358  Σ^csumge0 39912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-n0 11245  df-z 11330  df-uz 11640  df-q 11741  df-rp 11785  df-xadd 11899  df-ico 12131  df-icc 12132  df-fz 12277  df-fzo 12415  df-seq 12750  df-exp 12809  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-clim 14161  df-sum 14359  df-sumge0 39913
This theorem is referenced by:  sge0xadd  39985
  Copyright terms: Public domain W3C validator