Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgn3da Structured version   Visualization version   GIF version

Theorem sgn3da 30883
 Description: A conditional containing a signum is true if it is true in all three possible cases. (Contributed by Thierry Arnoux, 1-Oct-2018.)
Hypotheses
Ref Expression
sgn3da.0 (𝜑𝐴 ∈ ℝ*)
sgn3da.1 ((sgn‘𝐴) = 0 → (𝜓𝜒))
sgn3da.2 ((sgn‘𝐴) = 1 → (𝜓𝜃))
sgn3da.3 ((sgn‘𝐴) = -1 → (𝜓𝜏))
sgn3da.4 ((𝜑𝐴 = 0) → 𝜒)
sgn3da.5 ((𝜑 ∧ 0 < 𝐴) → 𝜃)
sgn3da.6 ((𝜑𝐴 < 0) → 𝜏)
Assertion
Ref Expression
sgn3da (𝜑𝜓)

Proof of Theorem sgn3da
StepHypRef Expression
1 sgn3da.0 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ*)
2 sgnval 13998 . . . . . . . . 9 (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)))
31, 2syl 17 . . . . . . . 8 (𝜑 → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)))
43eqeq2d 2758 . . . . . . 7 (𝜑 → (0 = (sgn‘𝐴) ↔ 0 = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))))
54pm5.32i 672 . . . . . 6 ((𝜑 ∧ 0 = (sgn‘𝐴)) ↔ (𝜑 ∧ 0 = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))))
6 sgn3da.1 . . . . . . . . 9 ((sgn‘𝐴) = 0 → (𝜓𝜒))
76eqcoms 2756 . . . . . . . 8 (0 = (sgn‘𝐴) → (𝜓𝜒))
87bicomd 213 . . . . . . 7 (0 = (sgn‘𝐴) → (𝜒𝜓))
98adantl 473 . . . . . 6 ((𝜑 ∧ 0 = (sgn‘𝐴)) → (𝜒𝜓))
105, 9sylbir 225 . . . . 5 ((𝜑 ∧ 0 = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) → (𝜒𝜓))
1110expcom 450 . . . 4 (0 = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) → (𝜑 → (𝜒𝜓)))
1211pm5.74d 262 . . 3 (0 = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) → ((𝜑𝜒) ↔ (𝜑𝜓)))
133eqeq2d 2758 . . . . . . 7 (𝜑 → (if(𝐴 < 0, -1, 1) = (sgn‘𝐴) ↔ if(𝐴 < 0, -1, 1) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))))
1413pm5.32i 672 . . . . . 6 ((𝜑 ∧ if(𝐴 < 0, -1, 1) = (sgn‘𝐴)) ↔ (𝜑 ∧ if(𝐴 < 0, -1, 1) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))))
15 eqeq1 2752 . . . . . . . . 9 (-1 = if(𝐴 < 0, -1, 1) → (-1 = (sgn‘𝐴) ↔ if(𝐴 < 0, -1, 1) = (sgn‘𝐴)))
1615imbi1d 330 . . . . . . . 8 (-1 = if(𝐴 < 0, -1, 1) → ((-1 = (sgn‘𝐴) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜓)) ↔ (if(𝐴 < 0, -1, 1) = (sgn‘𝐴) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜓))))
17 eqeq1 2752 . . . . . . . . 9 (1 = if(𝐴 < 0, -1, 1) → (1 = (sgn‘𝐴) ↔ if(𝐴 < 0, -1, 1) = (sgn‘𝐴)))
1817imbi1d 330 . . . . . . . 8 (1 = if(𝐴 < 0, -1, 1) → ((1 = (sgn‘𝐴) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜓)) ↔ (if(𝐴 < 0, -1, 1) = (sgn‘𝐴) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜓))))
19 sgn3da.6 . . . . . . . . . . . . . . 15 ((𝜑𝐴 < 0) → 𝜏)
2019adantr 472 . . . . . . . . . . . . . 14 (((𝜑𝐴 < 0) ∧ (𝐴 < 0 → 𝜏)) → 𝜏)
21 simp2 1129 . . . . . . . . . . . . . . 15 (((𝜑𝐴 < 0) ∧ 𝜏𝐴 < 0) → 𝜏)
22213expia 1114 . . . . . . . . . . . . . 14 (((𝜑𝐴 < 0) ∧ 𝜏) → (𝐴 < 0 → 𝜏))
2320, 22impbida 913 . . . . . . . . . . . . 13 ((𝜑𝐴 < 0) → ((𝐴 < 0 → 𝜏) ↔ 𝜏))
24 pm3.24 962 . . . . . . . . . . . . . . . . 17 ¬ (𝐴 < 0 ∧ ¬ 𝐴 < 0)
2524pm2.21i 116 . . . . . . . . . . . . . . . 16 ((𝐴 < 0 ∧ ¬ 𝐴 < 0) → 𝜃)
2625adantl 473 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐴 < 0 ∧ ¬ 𝐴 < 0)) → 𝜃)
2726expr 644 . . . . . . . . . . . . . 14 ((𝜑𝐴 < 0) → (¬ 𝐴 < 0 → 𝜃))
28 tbtru 1631 . . . . . . . . . . . . . 14 ((¬ 𝐴 < 0 → 𝜃) ↔ ((¬ 𝐴 < 0 → 𝜃) ↔ ⊤))
2927, 28sylib 208 . . . . . . . . . . . . 13 ((𝜑𝐴 < 0) → ((¬ 𝐴 < 0 → 𝜃) ↔ ⊤))
3023, 29anbi12d 749 . . . . . . . . . . . 12 ((𝜑𝐴 < 0) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ (𝜏 ∧ ⊤)))
31 ancom 465 . . . . . . . . . . . . 13 ((𝜏 ∧ ⊤) ↔ (⊤ ∧ 𝜏))
32 truan 1638 . . . . . . . . . . . . 13 ((⊤ ∧ 𝜏) ↔ 𝜏)
3331, 32bitri 264 . . . . . . . . . . . 12 ((𝜏 ∧ ⊤) ↔ 𝜏)
3430, 33syl6bb 276 . . . . . . . . . . 11 ((𝜑𝐴 < 0) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜏))
35343adant3 1124 . . . . . . . . . 10 ((𝜑𝐴 < 0 ∧ -1 = (sgn‘𝐴)) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜏))
36 sgn3da.3 . . . . . . . . . . . 12 ((sgn‘𝐴) = -1 → (𝜓𝜏))
3736eqcoms 2756 . . . . . . . . . . 11 (-1 = (sgn‘𝐴) → (𝜓𝜏))
38373ad2ant3 1127 . . . . . . . . . 10 ((𝜑𝐴 < 0 ∧ -1 = (sgn‘𝐴)) → (𝜓𝜏))
3935, 38bitr4d 271 . . . . . . . . 9 ((𝜑𝐴 < 0 ∧ -1 = (sgn‘𝐴)) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜓))
40393expia 1114 . . . . . . . 8 ((𝜑𝐴 < 0) → (-1 = (sgn‘𝐴) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜓)))
41193adant2 1123 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐴 < 0 ∧ 𝐴 < 0) → 𝜏)
42413expia 1114 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐴 < 0) → (𝐴 < 0 → 𝜏))
43 tbtru 1631 . . . . . . . . . . . . . 14 ((𝐴 < 0 → 𝜏) ↔ ((𝐴 < 0 → 𝜏) ↔ ⊤))
4442, 43sylib 208 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐴 < 0) → ((𝐴 < 0 → 𝜏) ↔ ⊤))
45 pm3.35 612 . . . . . . . . . . . . . . 15 ((¬ 𝐴 < 0 ∧ (¬ 𝐴 < 0 → 𝜃)) → 𝜃)
4645adantll 752 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐴 < 0) ∧ (¬ 𝐴 < 0 → 𝜃)) → 𝜃)
47 simp2 1129 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝐴 < 0) ∧ 𝜃 ∧ ¬ 𝐴 < 0) → 𝜃)
48473expia 1114 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐴 < 0) ∧ 𝜃) → (¬ 𝐴 < 0 → 𝜃))
4946, 48impbida 913 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐴 < 0) → ((¬ 𝐴 < 0 → 𝜃) ↔ 𝜃))
5044, 49anbi12d 749 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐴 < 0) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ (⊤ ∧ 𝜃)))
51 truan 1638 . . . . . . . . . . . 12 ((⊤ ∧ 𝜃) ↔ 𝜃)
5250, 51syl6bb 276 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐴 < 0) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜃))
53523adant3 1124 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴 < 0 ∧ 1 = (sgn‘𝐴)) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜃))
54 sgn3da.2 . . . . . . . . . . . 12 ((sgn‘𝐴) = 1 → (𝜓𝜃))
5554eqcoms 2756 . . . . . . . . . . 11 (1 = (sgn‘𝐴) → (𝜓𝜃))
56553ad2ant3 1127 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴 < 0 ∧ 1 = (sgn‘𝐴)) → (𝜓𝜃))
5753, 56bitr4d 271 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐴 < 0 ∧ 1 = (sgn‘𝐴)) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜓))
58573expia 1114 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 < 0) → (1 = (sgn‘𝐴) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜓)))
5916, 18, 40, 58ifbothda 4255 . . . . . . 7 (𝜑 → (if(𝐴 < 0, -1, 1) = (sgn‘𝐴) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜓)))
6059imp 444 . . . . . 6 ((𝜑 ∧ if(𝐴 < 0, -1, 1) = (sgn‘𝐴)) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜓))
6114, 60sylbir 225 . . . . 5 ((𝜑 ∧ if(𝐴 < 0, -1, 1) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜓))
6261expcom 450 . . . 4 (if(𝐴 < 0, -1, 1) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) → (𝜑 → (((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)) ↔ 𝜓)))
6362pm5.74d 262 . . 3 (if(𝐴 < 0, -1, 1) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) → ((𝜑 → ((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃))) ↔ (𝜑𝜓)))
64 sgn3da.4 . . . . 5 ((𝜑𝐴 = 0) → 𝜒)
6564expcom 450 . . . 4 (𝐴 = 0 → (𝜑𝜒))
6665adantl 473 . . 3 ((⊤ ∧ 𝐴 = 0) → (𝜑𝜒))
6719ex 449 . . . . . . 7 (𝜑 → (𝐴 < 0 → 𝜏))
6867adantr 472 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = 0) → (𝐴 < 0 → 𝜏))
69 simp1 1128 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 = 0 ∧ ¬ 𝐴 < 0) → 𝜑)
70 df-ne 2921 . . . . . . . . . . . 12 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
71 0xr 10249 . . . . . . . . . . . . 13 0 ∈ ℝ*
72 xrlttri2 12139 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) → (𝐴 ≠ 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
731, 71, 72sylancl 697 . . . . . . . . . . . 12 (𝜑 → (𝐴 ≠ 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
7470, 73syl5bbr 274 . . . . . . . . . . 11 (𝜑 → (¬ 𝐴 = 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
7574biimpa 502 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴 = 0) → (𝐴 < 0 ∨ 0 < 𝐴))
7675ord 391 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐴 = 0) → (¬ 𝐴 < 0 → 0 < 𝐴))
77763impia 1109 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 = 0 ∧ ¬ 𝐴 < 0) → 0 < 𝐴)
78 sgn3da.5 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → 𝜃)
7969, 77, 78syl2anc 696 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = 0 ∧ ¬ 𝐴 < 0) → 𝜃)
80793expia 1114 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = 0) → (¬ 𝐴 < 0 → 𝜃))
8168, 80jca 555 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = 0) → ((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃)))
8281expcom 450 . . . 4 𝐴 = 0 → (𝜑 → ((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃))))
8382adantl 473 . . 3 ((⊤ ∧ ¬ 𝐴 = 0) → (𝜑 → ((𝐴 < 0 → 𝜏) ∧ (¬ 𝐴 < 0 → 𝜃))))
8412, 63, 66, 83ifbothda 4255 . 2 (⊤ → (𝜑𝜓))
8584trud 1630 1 (𝜑𝜓)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1072   = wceq 1620  ⊤wtru 1621   ∈ wcel 2127   ≠ wne 2920  ifcif 4218   class class class wbr 4792  ‘cfv 6037  0cc0 10099  1c1 10100  ℝ*cxr 10236   < clt 10237  -cneg 10430  sgncsgn 13996 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-i2m1 10167  ax-1ne0 10168  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-po 5175  df-so 5176  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-ov 6804  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-neg 10432  df-sgn 13997 This theorem is referenced by:  sgnmul  30884  sgnsub  30886  sgnnbi  30887  sgnpbi  30888  sgn0bi  30889  sgnsgn  30890
 Copyright terms: Public domain W3C validator