Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgncl Structured version   Visualization version   GIF version

Theorem sgncl 31791
Description: Closure of the signum. (Contributed by Thierry Arnoux, 28-Sep-2018.)
Assertion
Ref Expression
sgncl (𝐴 ∈ ℝ* → (sgn‘𝐴) ∈ {-1, 0, 1})

Proof of Theorem sgncl
StepHypRef Expression
1 simpr 487 . . . . 5 ((𝐴 ∈ ℝ*𝐴 = 0) → 𝐴 = 0)
21fveq2d 6669 . . . 4 ((𝐴 ∈ ℝ*𝐴 = 0) → (sgn‘𝐴) = (sgn‘0))
3 sgn0 14442 . . . 4 (sgn‘0) = 0
42, 3syl6eq 2872 . . 3 ((𝐴 ∈ ℝ*𝐴 = 0) → (sgn‘𝐴) = 0)
5 c0ex 10629 . . . 4 0 ∈ V
65tpid2 4700 . . 3 0 ∈ {-1, 0, 1}
74, 6eqeltrdi 2921 . 2 ((𝐴 ∈ ℝ*𝐴 = 0) → (sgn‘𝐴) ∈ {-1, 0, 1})
8 sgnn 14447 . . . . 5 ((𝐴 ∈ ℝ*𝐴 < 0) → (sgn‘𝐴) = -1)
9 negex 10878 . . . . . 6 -1 ∈ V
109tpid1 4698 . . . . 5 -1 ∈ {-1, 0, 1}
118, 10eqeltrdi 2921 . . . 4 ((𝐴 ∈ ℝ*𝐴 < 0) → (sgn‘𝐴) ∈ {-1, 0, 1})
1211adantlr 713 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ 0) ∧ 𝐴 < 0) → (sgn‘𝐴) ∈ {-1, 0, 1})
13 sgnp 14443 . . . . 5 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1)
14 1ex 10631 . . . . . 6 1 ∈ V
1514tpid3 4703 . . . . 5 1 ∈ {-1, 0, 1}
1613, 15eqeltrdi 2921 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) ∈ {-1, 0, 1})
1716adantlr 713 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ 0) ∧ 0 < 𝐴) → (sgn‘𝐴) ∈ {-1, 0, 1})
18 0xr 10682 . . . 4 0 ∈ ℝ*
19 xrlttri2 12529 . . . . 5 ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) → (𝐴 ≠ 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
2019biimpa 479 . . . 4 (((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ 𝐴 ≠ 0) → (𝐴 < 0 ∨ 0 < 𝐴))
2118, 20mpanl2 699 . . 3 ((𝐴 ∈ ℝ*𝐴 ≠ 0) → (𝐴 < 0 ∨ 0 < 𝐴))
2212, 17, 21mpjaodan 955 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ 0) → (sgn‘𝐴) ∈ {-1, 0, 1})
237, 22pm2.61dane 3104 1 (𝐴 ∈ ℝ* → (sgn‘𝐴) ∈ {-1, 0, 1})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016  {ctp 4565   class class class wbr 5059  cfv 6350  0cc0 10531  1c1 10532  *cxr 10668   < clt 10669  -cneg 10865  sgncsgn 14439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-i2m1 10599  ax-rnegex 10602  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-po 5469  df-so 5470  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-neg 10867  df-sgn 14440
This theorem is referenced by:  sgnclre  31792  sgnmulsgn  31802  sgnmulsgp  31803  signstcl  31830  signstf  31831  signstf0  31833  signstfvn  31834  signsvtn0  31835  signstfvneq0  31837  signsvfn  31847
  Copyright terms: Public domain W3C validator