Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnmulsgn Structured version   Visualization version   GIF version

Theorem sgnmulsgn 31802
Description: If two real numbers are of different signs, so are their signs. (Contributed by Thierry Arnoux, 12-Oct-2018.)
Assertion
Ref Expression
sgnmulsgn ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) < 0 ↔ ((sgn‘𝐴) · (sgn‘𝐵)) < 0))

Proof of Theorem sgnmulsgn
StepHypRef Expression
1 neg1lt0 11748 . . . . 5 -1 < 0
2 breq1 5062 . . . . 5 ((sgn‘(𝐴 · 𝐵)) = -1 → ((sgn‘(𝐴 · 𝐵)) < 0 ↔ -1 < 0))
31, 2mpbiri 260 . . . 4 ((sgn‘(𝐴 · 𝐵)) = -1 → (sgn‘(𝐴 · 𝐵)) < 0)
43adantl 484 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) = -1) → (sgn‘(𝐴 · 𝐵)) < 0)
5 simpr 487 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = -1) → (sgn‘(𝐴 · 𝐵)) = -1)
6 simpr 487 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → (sgn‘(𝐴 · 𝐵)) = 0)
7 simplr 767 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → (sgn‘(𝐴 · 𝐵)) < 0)
87lt0ne0d 11199 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → (sgn‘(𝐴 · 𝐵)) ≠ 0)
96, 8pm2.21ddne 3101 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → (sgn‘(𝐴 · 𝐵)) = -1)
10 simpr 487 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 1) → (sgn‘(𝐴 · 𝐵)) = 1)
11 simplr 767 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 1) → (sgn‘(𝐴 · 𝐵)) < 0)
1210, 11eqbrtrrd 5083 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 1) → 1 < 0)
13 1nn0 11907 . . . . . 6 1 ∈ ℕ0
14 nn0nlt0 11917 . . . . . 6 (1 ∈ ℕ0 → ¬ 1 < 0)
1513, 14mp1i 13 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 1) → ¬ 1 < 0)
1612, 15pm2.21dd 197 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 1) → (sgn‘(𝐴 · 𝐵)) = -1)
17 remulcl 10616 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
1817rexrd 10685 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ*)
1918adantr 483 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) → (𝐴 · 𝐵) ∈ ℝ*)
20 sgncl 31791 . . . . 5 ((𝐴 · 𝐵) ∈ ℝ* → (sgn‘(𝐴 · 𝐵)) ∈ {-1, 0, 1})
21 eltpi 4619 . . . . 5 ((sgn‘(𝐴 · 𝐵)) ∈ {-1, 0, 1} → ((sgn‘(𝐴 · 𝐵)) = -1 ∨ (sgn‘(𝐴 · 𝐵)) = 0 ∨ (sgn‘(𝐴 · 𝐵)) = 1))
2219, 20, 213syl 18 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) → ((sgn‘(𝐴 · 𝐵)) = -1 ∨ (sgn‘(𝐴 · 𝐵)) = 0 ∨ (sgn‘(𝐴 · 𝐵)) = 1))
235, 9, 16, 22mpjao3dan 1427 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) → (sgn‘(𝐴 · 𝐵)) = -1)
244, 23impbida 799 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((sgn‘(𝐴 · 𝐵)) = -1 ↔ (sgn‘(𝐴 · 𝐵)) < 0))
25 sgnnbi 31798 . . 3 ((𝐴 · 𝐵) ∈ ℝ* → ((sgn‘(𝐴 · 𝐵)) = -1 ↔ (𝐴 · 𝐵) < 0))
2618, 25syl 17 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((sgn‘(𝐴 · 𝐵)) = -1 ↔ (𝐴 · 𝐵) < 0))
27 sgnmul 31795 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sgn‘(𝐴 · 𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)))
2827breq1d 5069 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((sgn‘(𝐴 · 𝐵)) < 0 ↔ ((sgn‘𝐴) · (sgn‘𝐵)) < 0))
2924, 26, 283bitr3d 311 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) < 0 ↔ ((sgn‘𝐴) · (sgn‘𝐵)) < 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3o 1082   = wceq 1533  wcel 2110  {ctp 4565   class class class wbr 5059  cfv 6350  (class class class)co 7150  cr 10530  0cc0 10531  1c1 10532   · cmul 10536  *cxr 10668   < clt 10669  -cneg 10865  0cn0 11891  sgncsgn 14439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-n0 11892  df-rp 12384  df-sgn 14440
This theorem is referenced by:  signsvfn  31847  signsvfnn  31851
  Copyright terms: Public domain W3C validator