![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sgnn | Structured version Visualization version GIF version |
Description: Proof that signum of negative extended real is -1. (Contributed by David A. Wheeler, 15-May-2015.) |
Ref | Expression |
---|---|
sgnn | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (sgn‘𝐴) = -1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sgnval 13998 | . . 3 ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) | |
2 | 1 | adantr 472 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) |
3 | 0xr 10249 | . . . . 5 ⊢ 0 ∈ ℝ* | |
4 | xrltne 12158 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ* ∧ 𝐴 < 0) → 0 ≠ 𝐴) | |
5 | 3, 4 | mp3an2 1549 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → 0 ≠ 𝐴) |
6 | nesym 2976 | . . . 4 ⊢ (0 ≠ 𝐴 ↔ ¬ 𝐴 = 0) | |
7 | 5, 6 | sylib 208 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → ¬ 𝐴 = 0) |
8 | 7 | iffalsed 4229 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) = if(𝐴 < 0, -1, 1)) |
9 | iftrue 4224 | . . 3 ⊢ (𝐴 < 0 → if(𝐴 < 0, -1, 1) = -1) | |
10 | 9 | adantl 473 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → if(𝐴 < 0, -1, 1) = -1) |
11 | 2, 8, 10 | 3eqtrd 2786 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (sgn‘𝐴) = -1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1620 ∈ wcel 2127 ≠ wne 2920 ifcif 4218 class class class wbr 4792 ‘cfv 6037 0cc0 10099 1c1 10100 ℝ*cxr 10236 < clt 10237 -cneg 10430 sgncsgn 13996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-i2m1 10167 ax-1ne0 10168 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-br 4793 df-opab 4853 df-mpt 4870 df-id 5162 df-po 5175 df-so 5176 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-ov 6804 df-er 7899 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-neg 10432 df-sgn 13997 |
This theorem is referenced by: sgnmnf 14005 sgncl 30880 sgnmul 30884 sgnsub 30886 sgnnbi 30887 sgnsgn 30890 |
Copyright terms: Public domain | W3C validator |