Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnsf Structured version   Visualization version   GIF version

Theorem sgnsf 28853
Description: The sign function. (Contributed by Thierry Arnoux, 9-Sep-2018.)
Hypotheses
Ref Expression
sgnsval.b 𝐵 = (Base‘𝑅)
sgnsval.0 0 = (0g𝑅)
sgnsval.l < = (lt‘𝑅)
sgnsval.s 𝑆 = (sgns𝑅)
Assertion
Ref Expression
sgnsf (𝑅𝑉𝑆:𝐵⟶{-1, 0, 1})

Proof of Theorem sgnsf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sgnsval.b . . 3 𝐵 = (Base‘𝑅)
2 sgnsval.0 . . 3 0 = (0g𝑅)
3 sgnsval.l . . 3 < = (lt‘𝑅)
4 sgnsval.s . . 3 𝑆 = (sgns𝑅)
51, 2, 3, 4sgnsv 28851 . 2 (𝑅𝑉𝑆 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
6 c0ex 9890 . . . . 5 0 ∈ V
76tpid2 4246 . . . 4 0 ∈ {-1, 0, 1}
8 1ex 9891 . . . . . 6 1 ∈ V
98tpid3 4249 . . . . 5 1 ∈ {-1, 0, 1}
10 negex 10130 . . . . . 6 -1 ∈ V
1110tpid1 4245 . . . . 5 -1 ∈ {-1, 0, 1}
129, 11keepel 4104 . . . 4 if( 0 < 𝑥, 1, -1) ∈ {-1, 0, 1}
137, 12keepel 4104 . . 3 if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)) ∈ {-1, 0, 1}
1413a1i 11 . 2 ((𝑅𝑉𝑥𝐵) → if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)) ∈ {-1, 0, 1})
155, 14fmpt3d 6277 1 (𝑅𝑉𝑆:𝐵⟶{-1, 0, 1})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  ifcif 4035  {ctp 4128   class class class wbr 4577  wf 5785  cfv 5789  0cc0 9792  1c1 9793  -cneg 10118  Basecbs 15643  0gc0g 15871  ltcplt 16712  sgnscsgns 28849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pr 4827  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-mulcl 9854  ax-i2m1 9860
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4942  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-ov 6529  df-neg 10120  df-sgns 28850
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator