MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrp1 Structured version   Visualization version   GIF version

Theorem sgrp1 17898
Description: The structure with one element and the only closed internal operation for a singleton is a semigroup. (Contributed by AV, 10-Feb-2020.)
Hypothesis
Ref Expression
sgrp1.m 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
Assertion
Ref Expression
sgrp1 (𝐼𝑉𝑀 ∈ Smgrp)

Proof of Theorem sgrp1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sgrp1.m . . 3 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
21mgm1 17856 . 2 (𝐼𝑉𝑀 ∈ Mgm)
3 df-ov 7148 . . . . . 6 (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩)
4 opex 5347 . . . . . . 7 𝐼, 𝐼⟩ ∈ V
5 fvsng 6934 . . . . . . 7 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
64, 5mpan 686 . . . . . 6 (𝐼𝑉 → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
73, 6syl5eq 2865 . . . . 5 (𝐼𝑉 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼)
87oveq1d 7160 . . . 4 (𝐼𝑉 → ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
97oveq2d 7161 . . . 4 (𝐼𝑉 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼)) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
108, 9eqtr4d 2856 . . 3 (𝐼𝑉 → ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼)))
11 oveq1 7152 . . . . . . . 8 (𝑥 = 𝐼 → (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦))
1211oveq1d 7160 . . . . . . 7 (𝑥 = 𝐼 → ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧))
13 oveq1 7152 . . . . . . 7 (𝑥 = 𝐼 → (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)))
1412, 13eqeq12d 2834 . . . . . 6 (𝑥 = 𝐼 → (((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) ↔ ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧))))
15142ralbidv 3196 . . . . 5 (𝑥 = 𝐼 → (∀𝑦 ∈ {𝐼}∀𝑧 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) ↔ ∀𝑦 ∈ {𝐼}∀𝑧 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧))))
1615ralsng 4605 . . . 4 (𝐼𝑉 → (∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼}∀𝑧 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) ↔ ∀𝑦 ∈ {𝐼}∀𝑧 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧))))
17 oveq2 7153 . . . . . . . 8 (𝑦 = 𝐼 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
1817oveq1d 7160 . . . . . . 7 (𝑦 = 𝐼 → ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧))
19 oveq1 7152 . . . . . . . 8 (𝑦 = 𝐼 → (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧))
2019oveq2d 7161 . . . . . . 7 (𝑦 = 𝐼 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)))
2118, 20eqeq12d 2834 . . . . . 6 (𝑦 = 𝐼 → (((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) ↔ ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧))))
2221ralbidv 3194 . . . . 5 (𝑦 = 𝐼 → (∀𝑧 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) ↔ ∀𝑧 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧))))
2322ralsng 4605 . . . 4 (𝐼𝑉 → (∀𝑦 ∈ {𝐼}∀𝑧 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) ↔ ∀𝑧 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧))))
24 oveq2 7153 . . . . . 6 (𝑧 = 𝐼 → ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
25 oveq2 7153 . . . . . . 7 (𝑧 = 𝐼 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
2625oveq2d 7161 . . . . . 6 (𝑧 = 𝐼 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼)))
2724, 26eqeq12d 2834 . . . . 5 (𝑧 = 𝐼 → (((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) ↔ ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))))
2827ralsng 4605 . . . 4 (𝐼𝑉 → (∀𝑧 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) ↔ ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))))
2916, 23, 283bitrd 306 . . 3 (𝐼𝑉 → (∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼}∀𝑧 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)) ↔ ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))))
3010, 29mpbird 258 . 2 (𝐼𝑉 → ∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼}∀𝑧 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧)))
31 snex 5322 . . . 4 {𝐼} ∈ V
321grpbase 16598 . . . 4 ({𝐼} ∈ V → {𝐼} = (Base‘𝑀))
3331, 32ax-mp 5 . . 3 {𝐼} = (Base‘𝑀)
34 snex 5322 . . . 4 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V
351grpplusg 16599 . . . 4 ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
3634, 35ax-mp 5 . . 3 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀)
3733, 36issgrp 17890 . 2 (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼}∀𝑧 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦){⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧) = (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩} (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑧))))
382, 30, 37sylanbrc 583 1 (𝐼𝑉𝑀 ∈ Smgrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1528  wcel 2105  wral 3135  Vcvv 3492  {csn 4557  {cpr 4559  cop 4563  cfv 6348  (class class class)co 7145  ndxcnx 16468  Basecbs 16471  +gcplusg 16553  Mgmcmgm 17838  Smgrpcsgrp 17888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-plusg 16566  df-mgm 17840  df-sgrp 17889
This theorem is referenced by:  mnd1  17940
  Copyright terms: Public domain W3C validator