Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  shftuz Structured version   Visualization version   GIF version

Theorem shftuz 13743
 Description: A shift of the upper integers. (Contributed by Mario Carneiro, 5-Nov-2013.)
Assertion
Ref Expression
shftuz ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ (ℤ𝐵)} = (ℤ‘(𝐵 + 𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem shftuz
StepHypRef Expression
1 df-rab 2916 . 2 {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ (ℤ𝐵)} = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ (ℤ𝐵))}
2 simp2 1060 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ (ℤ𝐵)) → 𝑥 ∈ ℂ)
3 zcn 11326 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
433ad2ant1 1080 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ (ℤ𝐵)) → 𝐴 ∈ ℂ)
52, 4npcand 10340 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ (ℤ𝐵)) → ((𝑥𝐴) + 𝐴) = 𝑥)
6 eluzadd 11660 . . . . . . . . 9 (((𝑥𝐴) ∈ (ℤ𝐵) ∧ 𝐴 ∈ ℤ) → ((𝑥𝐴) + 𝐴) ∈ (ℤ‘(𝐵 + 𝐴)))
76ancoms 469 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝑥𝐴) ∈ (ℤ𝐵)) → ((𝑥𝐴) + 𝐴) ∈ (ℤ‘(𝐵 + 𝐴)))
873adant2 1078 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ (ℤ𝐵)) → ((𝑥𝐴) + 𝐴) ∈ (ℤ‘(𝐵 + 𝐴)))
95, 8eqeltrrd 2699 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ (ℤ𝐵)) → 𝑥 ∈ (ℤ‘(𝐵 + 𝐴)))
1093expib 1265 . . . . 5 (𝐴 ∈ ℤ → ((𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ (ℤ𝐵)) → 𝑥 ∈ (ℤ‘(𝐵 + 𝐴))))
1110adantr 481 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ (ℤ𝐵)) → 𝑥 ∈ (ℤ‘(𝐵 + 𝐴))))
12 eluzelcn 11643 . . . . . 6 (𝑥 ∈ (ℤ‘(𝐵 + 𝐴)) → 𝑥 ∈ ℂ)
1312a1i 11 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑥 ∈ (ℤ‘(𝐵 + 𝐴)) → 𝑥 ∈ ℂ))
14 eluzsub 11661 . . . . . . 7 ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑥 ∈ (ℤ‘(𝐵 + 𝐴))) → (𝑥𝐴) ∈ (ℤ𝐵))
15143expia 1264 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑥 ∈ (ℤ‘(𝐵 + 𝐴)) → (𝑥𝐴) ∈ (ℤ𝐵)))
1615ancoms 469 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑥 ∈ (ℤ‘(𝐵 + 𝐴)) → (𝑥𝐴) ∈ (ℤ𝐵)))
1713, 16jcad 555 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑥 ∈ (ℤ‘(𝐵 + 𝐴)) → (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ (ℤ𝐵))))
1811, 17impbid 202 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ (ℤ𝐵)) ↔ 𝑥 ∈ (ℤ‘(𝐵 + 𝐴))))
1918abbi1dv 2740 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ (ℤ𝐵))} = (ℤ‘(𝐵 + 𝐴)))
201, 19syl5eq 2667 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ (ℤ𝐵)} = (ℤ‘(𝐵 + 𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  {cab 2607  {crab 2911  ‘cfv 5847  (class class class)co 6604  ℂcc 9878   + caddc 9883   − cmin 10210  ℤcz 11321  ℤ≥cuz 11631 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632 This theorem is referenced by:  seqshft  13759  uzmptshftfval  38024
 Copyright terms: Public domain W3C validator