![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shle0 | Structured version Visualization version GIF version |
Description: No subspace is smaller than the zero subspace. (Contributed by NM, 24-Nov-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shle0 | ⊢ (𝐴 ∈ Sℋ → (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sh0le 28606 | . . 3 ⊢ (𝐴 ∈ Sℋ → 0ℋ ⊆ 𝐴) | |
2 | 1 | biantrud 529 | . 2 ⊢ (𝐴 ∈ Sℋ → (𝐴 ⊆ 0ℋ ↔ (𝐴 ⊆ 0ℋ ∧ 0ℋ ⊆ 𝐴))) |
3 | eqss 3757 | . 2 ⊢ (𝐴 = 0ℋ ↔ (𝐴 ⊆ 0ℋ ∧ 0ℋ ⊆ 𝐴)) | |
4 | 2, 3 | syl6bbr 278 | 1 ⊢ (𝐴 ∈ Sℋ → (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1630 ∈ wcel 2137 ⊆ wss 3713 Sℋ csh 28092 0ℋc0h 28099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-hilex 28163 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-rab 3057 df-v 3340 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-op 4326 df-br 4803 df-opab 4863 df-xp 5270 df-cnv 5272 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-sh 28371 df-ch0 28417 |
This theorem is referenced by: chle0 28609 shne0i 28614 shs00i 28616 cdj3lem1 29600 |
Copyright terms: Public domain | W3C validator |