HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shlej1 Structured version   Visualization version   GIF version

Theorem shlej1 29139
Description: Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 22-Jun-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
shlej1 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐴 𝐶) ⊆ (𝐵 𝐶))

Proof of Theorem shlej1
StepHypRef Expression
1 simpr 487 . . 3 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐴𝐵)
2 unss1 4157 . . . 4 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
3 simpl1 1187 . . . . . . 7 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐴S )
4 shss 28989 . . . . . . 7 (𝐴S𝐴 ⊆ ℋ)
53, 4syl 17 . . . . . 6 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐴 ⊆ ℋ)
6 simpl3 1189 . . . . . . 7 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐶S )
7 shss 28989 . . . . . . 7 (𝐶S𝐶 ⊆ ℋ)
86, 7syl 17 . . . . . 6 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐶 ⊆ ℋ)
95, 8unssd 4164 . . . . 5 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐴𝐶) ⊆ ℋ)
10 simpl2 1188 . . . . . . 7 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐵S )
11 shss 28989 . . . . . . 7 (𝐵S𝐵 ⊆ ℋ)
1210, 11syl 17 . . . . . 6 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐵 ⊆ ℋ)
1312, 8unssd 4164 . . . . 5 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐵𝐶) ⊆ ℋ)
14 occon2 29067 . . . . 5 (((𝐴𝐶) ⊆ ℋ ∧ (𝐵𝐶) ⊆ ℋ) → ((𝐴𝐶) ⊆ (𝐵𝐶) → (⊥‘(⊥‘(𝐴𝐶))) ⊆ (⊥‘(⊥‘(𝐵𝐶)))))
159, 13, 14syl2anc 586 . . . 4 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → ((𝐴𝐶) ⊆ (𝐵𝐶) → (⊥‘(⊥‘(𝐴𝐶))) ⊆ (⊥‘(⊥‘(𝐵𝐶)))))
162, 15syl5 34 . . 3 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐴𝐵 → (⊥‘(⊥‘(𝐴𝐶))) ⊆ (⊥‘(⊥‘(𝐵𝐶)))))
171, 16mpd 15 . 2 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (⊥‘(⊥‘(𝐴𝐶))) ⊆ (⊥‘(⊥‘(𝐵𝐶))))
18 shjval 29130 . . 3 ((𝐴S𝐶S ) → (𝐴 𝐶) = (⊥‘(⊥‘(𝐴𝐶))))
193, 6, 18syl2anc 586 . 2 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐴 𝐶) = (⊥‘(⊥‘(𝐴𝐶))))
20 shjval 29130 . . 3 ((𝐵S𝐶S ) → (𝐵 𝐶) = (⊥‘(⊥‘(𝐵𝐶))))
2110, 6, 20syl2anc 586 . 2 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐵 𝐶) = (⊥‘(⊥‘(𝐵𝐶))))
2217, 19, 213sstr4d 4016 1 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐴 𝐶) ⊆ (𝐵 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  cun 3936  wss 3938  cfv 6357  (class class class)co 7158  chba 28698   S csh 28707  cort 28709   chj 28712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-hilex 28778  ax-hfvadd 28779  ax-hv0cl 28782  ax-hfvmul 28784  ax-hvmul0 28789  ax-hfi 28858  ax-his2 28862  ax-his3 28863
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-ltxr 10682  df-sh 28986  df-oc 29031  df-chj 29089
This theorem is referenced by:  shlej2  29140  shlej1i  29157  chlej1  29289
  Copyright terms: Public domain W3C validator