HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shscli Structured version   Visualization version   GIF version

Theorem shscli 27361
Description: Closure of subspace sum. (Contributed by NM, 15-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
shscl.1 𝐴S
shscl.2 𝐵S
Assertion
Ref Expression
shscli (𝐴 + 𝐵) ∈ S

Proof of Theorem shscli
Dummy variables 𝑥 𝑓 𝑦 𝑧 𝑤 𝑔 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shscl.1 . . . 4 𝐴S
2 shscl.2 . . . 4 𝐵S
3 shsss 27357 . . . 4 ((𝐴S𝐵S ) → (𝐴 + 𝐵) ⊆ ℋ)
41, 2, 3mp2an 703 . . 3 (𝐴 + 𝐵) ⊆ ℋ
5 sh0 27258 . . . . . 6 (𝐴S → 0𝐴)
61, 5ax-mp 5 . . . . 5 0𝐴
7 sh0 27258 . . . . . 6 (𝐵S → 0𝐵)
82, 7ax-mp 5 . . . . 5 0𝐵
9 ax-hv0cl 27045 . . . . . . 7 0 ∈ ℋ
109hvaddid2i 27071 . . . . . 6 (0 + 0) = 0
1110eqcomi 2613 . . . . 5 0 = (0 + 0)
12 rspceov 6563 . . . . 5 ((0𝐴 ∧ 0𝐵 ∧ 0 = (0 + 0)) → ∃𝑥𝐴𝑦𝐵 0 = (𝑥 + 𝑦))
136, 8, 11, 12mp3an 1415 . . . 4 𝑥𝐴𝑦𝐵 0 = (𝑥 + 𝑦)
141, 2shseli 27360 . . . 4 (0 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 0 = (𝑥 + 𝑦))
1513, 14mpbir 219 . . 3 0 ∈ (𝐴 + 𝐵)
164, 15pm3.2i 469 . 2 ((𝐴 + 𝐵) ⊆ ℋ ∧ 0 ∈ (𝐴 + 𝐵))
171, 2shseli 27360 . . . . . 6 (𝑥 ∈ (𝐴 + 𝐵) ↔ ∃𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤))
181, 2shseli 27360 . . . . . 6 (𝑦 ∈ (𝐴 + 𝐵) ↔ ∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢))
19 shaddcl 27259 . . . . . . . . . . . . . . . 16 ((𝐴S𝑧𝐴𝑣𝐴) → (𝑧 + 𝑣) ∈ 𝐴)
201, 19mp3an1 1402 . . . . . . . . . . . . . . 15 ((𝑧𝐴𝑣𝐴) → (𝑧 + 𝑣) ∈ 𝐴)
2120ad2ant2r 778 . . . . . . . . . . . . . 14 (((𝑧𝐴𝑤𝐵) ∧ (𝑣𝐴𝑢𝐵)) → (𝑧 + 𝑣) ∈ 𝐴)
2221ad2ant2r 778 . . . . . . . . . . . . 13 ((((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤)) ∧ ((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢))) → (𝑧 + 𝑣) ∈ 𝐴)
23 shaddcl 27259 . . . . . . . . . . . . . . . 16 ((𝐵S𝑤𝐵𝑢𝐵) → (𝑤 + 𝑢) ∈ 𝐵)
242, 23mp3an1 1402 . . . . . . . . . . . . . . 15 ((𝑤𝐵𝑢𝐵) → (𝑤 + 𝑢) ∈ 𝐵)
2524ad2ant2l 777 . . . . . . . . . . . . . 14 (((𝑧𝐴𝑤𝐵) ∧ (𝑣𝐴𝑢𝐵)) → (𝑤 + 𝑢) ∈ 𝐵)
2625ad2ant2r 778 . . . . . . . . . . . . 13 ((((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤)) ∧ ((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢))) → (𝑤 + 𝑢) ∈ 𝐵)
27 oveq12 6531 . . . . . . . . . . . . . . 15 ((𝑥 = (𝑧 + 𝑤) ∧ 𝑦 = (𝑣 + 𝑢)) → (𝑥 + 𝑦) = ((𝑧 + 𝑤) + (𝑣 + 𝑢)))
2827ad2ant2l 777 . . . . . . . . . . . . . 14 ((((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤)) ∧ ((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢))) → (𝑥 + 𝑦) = ((𝑧 + 𝑤) + (𝑣 + 𝑢)))
291sheli 27256 . . . . . . . . . . . . . . . . . 18 (𝑧𝐴𝑧 ∈ ℋ)
301sheli 27256 . . . . . . . . . . . . . . . . . 18 (𝑣𝐴𝑣 ∈ ℋ)
3129, 30anim12i 587 . . . . . . . . . . . . . . . . 17 ((𝑧𝐴𝑣𝐴) → (𝑧 ∈ ℋ ∧ 𝑣 ∈ ℋ))
322sheli 27256 . . . . . . . . . . . . . . . . . 18 (𝑤𝐵𝑤 ∈ ℋ)
332sheli 27256 . . . . . . . . . . . . . . . . . 18 (𝑢𝐵𝑢 ∈ ℋ)
3432, 33anim12i 587 . . . . . . . . . . . . . . . . 17 ((𝑤𝐵𝑢𝐵) → (𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ))
35 hvadd4 27078 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℋ ∧ 𝑣 ∈ ℋ) ∧ (𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ)) → ((𝑧 + 𝑣) + (𝑤 + 𝑢)) = ((𝑧 + 𝑤) + (𝑣 + 𝑢)))
3631, 34, 35syl2an 492 . . . . . . . . . . . . . . . 16 (((𝑧𝐴𝑣𝐴) ∧ (𝑤𝐵𝑢𝐵)) → ((𝑧 + 𝑣) + (𝑤 + 𝑢)) = ((𝑧 + 𝑤) + (𝑣 + 𝑢)))
3736an4s 864 . . . . . . . . . . . . . . 15 (((𝑧𝐴𝑤𝐵) ∧ (𝑣𝐴𝑢𝐵)) → ((𝑧 + 𝑣) + (𝑤 + 𝑢)) = ((𝑧 + 𝑤) + (𝑣 + 𝑢)))
3837ad2ant2r 778 . . . . . . . . . . . . . 14 ((((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤)) ∧ ((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢))) → ((𝑧 + 𝑣) + (𝑤 + 𝑢)) = ((𝑧 + 𝑤) + (𝑣 + 𝑢)))
3928, 38eqtr4d 2641 . . . . . . . . . . . . 13 ((((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤)) ∧ ((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢))) → (𝑥 + 𝑦) = ((𝑧 + 𝑣) + (𝑤 + 𝑢)))
40 rspceov 6563 . . . . . . . . . . . . 13 (((𝑧 + 𝑣) ∈ 𝐴 ∧ (𝑤 + 𝑢) ∈ 𝐵 ∧ (𝑥 + 𝑦) = ((𝑧 + 𝑣) + (𝑤 + 𝑢))) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))
4122, 26, 39, 40syl3anc 1317 . . . . . . . . . . . 12 ((((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤)) ∧ ((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢))) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))
4241ancoms 467 . . . . . . . . . . 11 ((((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢)) ∧ ((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤))) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))
4342exp43 637 . . . . . . . . . 10 ((𝑣𝐴𝑢𝐵) → (𝑦 = (𝑣 + 𝑢) → ((𝑧𝐴𝑤𝐵) → (𝑥 = (𝑧 + 𝑤) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔)))))
4443rexlimivv 3012 . . . . . . . . 9 (∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢) → ((𝑧𝐴𝑤𝐵) → (𝑥 = (𝑧 + 𝑤) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))))
4544com3l 86 . . . . . . . 8 ((𝑧𝐴𝑤𝐵) → (𝑥 = (𝑧 + 𝑤) → (∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))))
4645rexlimivv 3012 . . . . . . 7 (∃𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤) → (∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔)))
4746imp 443 . . . . . 6 ((∃𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤) ∧ ∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢)) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))
4817, 18, 47syl2anb 494 . . . . 5 ((𝑥 ∈ (𝐴 + 𝐵) ∧ 𝑦 ∈ (𝐴 + 𝐵)) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))
491, 2shseli 27360 . . . . 5 ((𝑥 + 𝑦) ∈ (𝐴 + 𝐵) ↔ ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))
5048, 49sylibr 222 . . . 4 ((𝑥 ∈ (𝐴 + 𝐵) ∧ 𝑦 ∈ (𝐴 + 𝐵)) → (𝑥 + 𝑦) ∈ (𝐴 + 𝐵))
5150rgen2a 2954 . . 3 𝑥 ∈ (𝐴 + 𝐵)∀𝑦 ∈ (𝐴 + 𝐵)(𝑥 + 𝑦) ∈ (𝐴 + 𝐵)
52 shmulcl 27260 . . . . . . . . . . . . . 14 ((𝐴S𝑥 ∈ ℂ ∧ 𝑣𝐴) → (𝑥 · 𝑣) ∈ 𝐴)
531, 52mp3an1 1402 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑣𝐴) → (𝑥 · 𝑣) ∈ 𝐴)
5453adantrr 748 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢)))) → (𝑥 · 𝑣) ∈ 𝐴)
55 shmulcl 27260 . . . . . . . . . . . . . . 15 ((𝐵S𝑥 ∈ ℂ ∧ 𝑢𝐵) → (𝑥 · 𝑢) ∈ 𝐵)
562, 55mp3an1 1402 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑢𝐵) → (𝑥 · 𝑢) ∈ 𝐵)
5756adantrr 748 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢))) → (𝑥 · 𝑢) ∈ 𝐵)
5857adantrl 747 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢)))) → (𝑥 · 𝑢) ∈ 𝐵)
59 oveq2 6530 . . . . . . . . . . . . . . 15 (𝑦 = (𝑣 + 𝑢) → (𝑥 · 𝑦) = (𝑥 · (𝑣 + 𝑢)))
6059adantl 480 . . . . . . . . . . . . . 14 ((𝑢𝐵𝑦 = (𝑣 + 𝑢)) → (𝑥 · 𝑦) = (𝑥 · (𝑣 + 𝑢)))
6160ad2antll 760 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢)))) → (𝑥 · 𝑦) = (𝑥 · (𝑣 + 𝑢)))
62 id 22 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
63 ax-hvdistr1 27050 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (𝑥 · (𝑣 + 𝑢)) = ((𝑥 · 𝑣) + (𝑥 · 𝑢)))
6462, 30, 33, 63syl3an 1359 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑣𝐴𝑢𝐵) → (𝑥 · (𝑣 + 𝑢)) = ((𝑥 · 𝑣) + (𝑥 · 𝑢)))
65643expb 1257 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (𝑣𝐴𝑢𝐵)) → (𝑥 · (𝑣 + 𝑢)) = ((𝑥 · 𝑣) + (𝑥 · 𝑢)))
6665adantrrr 756 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢)))) → (𝑥 · (𝑣 + 𝑢)) = ((𝑥 · 𝑣) + (𝑥 · 𝑢)))
6761, 66eqtrd 2638 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢)))) → (𝑥 · 𝑦) = ((𝑥 · 𝑣) + (𝑥 · 𝑢)))
68 rspceov 6563 . . . . . . . . . . . 12 (((𝑥 · 𝑣) ∈ 𝐴 ∧ (𝑥 · 𝑢) ∈ 𝐵 ∧ (𝑥 · 𝑦) = ((𝑥 · 𝑣) + (𝑥 · 𝑢))) → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))
6954, 58, 67, 68syl3anc 1317 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢)))) → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))
7069ancoms 467 . . . . . . . . . 10 (((𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢))) ∧ 𝑥 ∈ ℂ) → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))
7170exp42 636 . . . . . . . . 9 (𝑣𝐴 → (𝑢𝐵 → (𝑦 = (𝑣 + 𝑢) → (𝑥 ∈ ℂ → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔)))))
7271imp 443 . . . . . . . 8 ((𝑣𝐴𝑢𝐵) → (𝑦 = (𝑣 + 𝑢) → (𝑥 ∈ ℂ → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))))
7372rexlimivv 3012 . . . . . . 7 (∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢) → (𝑥 ∈ ℂ → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔)))
7473impcom 444 . . . . . 6 ((𝑥 ∈ ℂ ∧ ∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢)) → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))
7518, 74sylan2b 490 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (𝐴 + 𝐵)) → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))
761, 2shseli 27360 . . . . 5 ((𝑥 · 𝑦) ∈ (𝐴 + 𝐵) ↔ ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))
7775, 76sylibr 222 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (𝐴 + 𝐵)) → (𝑥 · 𝑦) ∈ (𝐴 + 𝐵))
7877rgen2 2952 . . 3 𝑥 ∈ ℂ ∀𝑦 ∈ (𝐴 + 𝐵)(𝑥 · 𝑦) ∈ (𝐴 + 𝐵)
7951, 78pm3.2i 469 . 2 (∀𝑥 ∈ (𝐴 + 𝐵)∀𝑦 ∈ (𝐴 + 𝐵)(𝑥 + 𝑦) ∈ (𝐴 + 𝐵) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (𝐴 + 𝐵)(𝑥 · 𝑦) ∈ (𝐴 + 𝐵))
80 issh2 27251 . 2 ((𝐴 + 𝐵) ∈ S ↔ (((𝐴 + 𝐵) ⊆ ℋ ∧ 0 ∈ (𝐴 + 𝐵)) ∧ (∀𝑥 ∈ (𝐴 + 𝐵)∀𝑦 ∈ (𝐴 + 𝐵)(𝑥 + 𝑦) ∈ (𝐴 + 𝐵) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (𝐴 + 𝐵)(𝑥 · 𝑦) ∈ (𝐴 + 𝐵))))
8116, 79, 80mpbir2an 956 1 (𝐴 + 𝐵) ∈ S
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1975  wral 2890  wrex 2891  wss 3534  (class class class)co 6522  cc 9785  chil 26961   + cva 26962   · csm 26963  0c0v 26966   S csh 26970   + cph 26973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-rep 4688  ax-sep 4698  ax-nul 4707  ax-pow 4759  ax-pr 4823  ax-un 6819  ax-resscn 9844  ax-1cn 9845  ax-icn 9846  ax-addcl 9847  ax-addrcl 9848  ax-mulcl 9849  ax-mulrcl 9850  ax-mulcom 9851  ax-addass 9852  ax-mulass 9853  ax-distr 9854  ax-i2m1 9855  ax-1ne0 9856  ax-1rid 9857  ax-rnegex 9858  ax-rrecex 9859  ax-cnre 9860  ax-pre-lttri 9861  ax-pre-lttrn 9862  ax-pre-ltadd 9863  ax-hilex 27041  ax-hfvadd 27042  ax-hvcom 27043  ax-hvass 27044  ax-hv0cl 27045  ax-hvaddid 27046  ax-hfvmul 27047  ax-hvmulid 27048  ax-hvdistr1 27050  ax-hvdistr2 27051  ax-hvmul0 27052
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-nel 2777  df-ral 2895  df-rex 2896  df-reu 2897  df-rab 2899  df-v 3169  df-sbc 3397  df-csb 3494  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-nul 3869  df-if 4031  df-pw 4104  df-sn 4120  df-pr 4122  df-op 4126  df-uni 4362  df-iun 4446  df-br 4573  df-opab 4633  df-mpt 4634  df-id 4938  df-po 4944  df-so 4945  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-f1 5790  df-fo 5791  df-f1o 5792  df-fv 5793  df-riota 6484  df-ov 6525  df-oprab 6526  df-mpt2 6527  df-er 7601  df-en 7814  df-dom 7815  df-sdom 7816  df-pnf 9927  df-mnf 9928  df-ltxr 9930  df-sub 10114  df-neg 10115  df-grpo 26492  df-ablo 26547  df-hvsub 27013  df-sh 27249  df-shs 27352
This theorem is referenced by:  shscl  27362  shsval2i  27431  shjshsi  27536  spanuni  27588  5oalem1  27698  5oalem3  27700  5oalem5  27702  5oalem6  27703  5oai  27705  3oalem2  27707  3oalem6  27711  mayete3i  27772  sumdmdlem  28462
  Copyright terms: Public domain W3C validator