![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shsspwh | Structured version Visualization version GIF version |
Description: Subspaces are subsets of Hilbert space. (Contributed by NM, 24-Nov-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shsspwh | ⊢ Sℋ ⊆ 𝒫 ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwuni 4506 | . 2 ⊢ Sℋ ⊆ 𝒫 ∪ Sℋ | |
2 | helsh 28230 | . . . 4 ⊢ ℋ ∈ Sℋ | |
3 | shss 28195 | . . . . 5 ⊢ (𝑥 ∈ Sℋ → 𝑥 ⊆ ℋ) | |
4 | 3 | rgen 2951 | . . . 4 ⊢ ∀𝑥 ∈ Sℋ 𝑥 ⊆ ℋ |
5 | ssunieq 4504 | . . . 4 ⊢ (( ℋ ∈ Sℋ ∧ ∀𝑥 ∈ Sℋ 𝑥 ⊆ ℋ) → ℋ = ∪ Sℋ ) | |
6 | 2, 4, 5 | mp2an 708 | . . 3 ⊢ ℋ = ∪ Sℋ |
7 | 6 | pweqi 4195 | . 2 ⊢ 𝒫 ℋ = 𝒫 ∪ Sℋ |
8 | 1, 7 | sseqtr4i 3671 | 1 ⊢ Sℋ ⊆ 𝒫 ℋ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∈ wcel 2030 ∀wral 2941 ⊆ wss 3607 𝒫 cpw 4191 ∪ cuni 4468 ℋchil 27904 Sℋ csh 27913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-i2m1 10042 ax-1ne0 10043 ax-rrecex 10046 ax-cnre 10047 ax-hilex 27984 ax-hfvadd 27985 ax-hv0cl 27988 ax-hfvmul 27990 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-map 7901 df-nn 11059 df-hlim 27957 df-sh 28192 df-ch 28206 |
This theorem is referenced by: chsspwh 28232 shsupunss 28333 |
Copyright terms: Public domain | W3C validator |