HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shsubcl Structured version   Visualization version   GIF version

Theorem shsubcl 28378
Description: Closure of vector subtraction in a subspace of a Hilbert space. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
shsubcl ((𝐻S𝐴𝐻𝐵𝐻) → (𝐴 𝐵) ∈ 𝐻)

Proof of Theorem shsubcl
StepHypRef Expression
1 shss 28368 . . . . . 6 (𝐻S𝐻 ⊆ ℋ)
21sseld 3735 . . . . 5 (𝐻S → (𝐴𝐻𝐴 ∈ ℋ))
31sseld 3735 . . . . 5 (𝐻S → (𝐵𝐻𝐵 ∈ ℋ))
42, 3anim12d 587 . . . 4 (𝐻S → ((𝐴𝐻𝐵𝐻) → (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ)))
543impib 1108 . . 3 ((𝐻S𝐴𝐻𝐵𝐻) → (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ))
6 hvsubval 28174 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))
75, 6syl 17 . 2 ((𝐻S𝐴𝐻𝐵𝐻) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))
8 neg1cn 11308 . . . . 5 -1 ∈ ℂ
9 shmulcl 28376 . . . . 5 ((𝐻S ∧ -1 ∈ ℂ ∧ 𝐵𝐻) → (-1 · 𝐵) ∈ 𝐻)
108, 9mp3an2 1553 . . . 4 ((𝐻S𝐵𝐻) → (-1 · 𝐵) ∈ 𝐻)
11103adant2 1125 . . 3 ((𝐻S𝐴𝐻𝐵𝐻) → (-1 · 𝐵) ∈ 𝐻)
12 shaddcl 28375 . . 3 ((𝐻S𝐴𝐻 ∧ (-1 · 𝐵) ∈ 𝐻) → (𝐴 + (-1 · 𝐵)) ∈ 𝐻)
1311, 12syld3an3 1512 . 2 ((𝐻S𝐴𝐻𝐵𝐻) → (𝐴 + (-1 · 𝐵)) ∈ 𝐻)
147, 13eqeltrd 2831 1 ((𝐻S𝐴𝐻𝐵𝐻) → (𝐴 𝐵) ∈ 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1624  wcel 2131  (class class class)co 6805  cc 10118  1c1 10121  -cneg 10451  chil 28077   + cva 28078   · csm 28079   cmv 28083   S csh 28086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-hilex 28157  ax-hfvadd 28158  ax-hfvmul 28163
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-po 5179  df-so 5180  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10260  df-mnf 10261  df-ltxr 10263  df-sub 10452  df-neg 10453  df-hvsub 28129  df-sh 28365
This theorem is referenced by:  hhssmetdval  28436  shuni  28460  shsvs  28483  omlsilem  28562  pjoc1i  28591  chscllem2  28798  sumspansn  28809  spansncvi  28812  pjss2i  28840  pjssmii  28841  pjocini  28858  sumdmdii  29575  cdjreui  29592
  Copyright terms: Public domain W3C validator