HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shsval Structured version   Visualization version   GIF version

Theorem shsval 27361
Description: Value of subspace sum of two Hilbert space subspaces. Definition of subspace sum in [Kalmbach] p. 65. (Contributed by NM, 16-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
shsval ((𝐴S𝐵S ) → (𝐴 + 𝐵) = ( + “ (𝐴 × 𝐵)))

Proof of Theorem shsval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq12 5048 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 × 𝑦) = (𝐴 × 𝐵))
21imaeq2d 5372 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → ( + “ (𝑥 × 𝑦)) = ( + “ (𝐴 × 𝐵)))
3 df-shs 27357 . 2 + = (𝑥S , 𝑦S ↦ ( + “ (𝑥 × 𝑦)))
4 hilablo 27207 . . 3 + ∈ AbelOp
5 imaexg 6972 . . 3 ( + ∈ AbelOp → ( + “ (𝐴 × 𝐵)) ∈ V)
64, 5ax-mp 5 . 2 ( + “ (𝐴 × 𝐵)) ∈ V
72, 3, 6ovmpt2a 6667 1 ((𝐴S𝐵S ) → (𝐴 + 𝐵) = ( + “ (𝐴 × 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  Vcvv 3172   × cxp 5026  cima 5031  (class class class)co 6527  AbelOpcablo 26551   + cva 26967   S csh 26975   + cph 26978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-hilex 27046  ax-hfvadd 27047  ax-hvcom 27048  ax-hvass 27049  ax-hv0cl 27050  ax-hvaddid 27051  ax-hfvmul 27052  ax-hvmulid 27053  ax-hvdistr2 27056  ax-hvmul0 27057
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-po 4949  df-so 4950  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-ltxr 9935  df-sub 10119  df-neg 10120  df-grpo 26497  df-ablo 26552  df-hvsub 27018  df-shs 27357
This theorem is referenced by:  shsss  27362  shsel  27363
  Copyright terms: Public domain W3C validator