Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sibfof Structured version   Visualization version   GIF version

Theorem sibfof 31600
Description: Applying function operations on simple functions results in simple functions with regard to the destination space, provided the operation fulfills a simple condition. (Contributed by Thierry Arnoux, 12-Mar-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
sibfof.c 𝐶 = (Base‘𝐾)
sibfof.0 (𝜑𝑊 ∈ TopSp)
sibfof.1 (𝜑+ :(𝐵 × 𝐵)⟶𝐶)
sibfof.2 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
sibfof.3 (𝜑𝐾 ∈ TopSp)
sibfof.4 (𝜑𝐽 ∈ Fre)
sibfof.5 (𝜑 → ( 0 + 0 ) = (0g𝐾))
Assertion
Ref Expression
sibfof (𝜑 → (𝐹f + 𝐺) ∈ dom (𝐾sitg𝑀))

Proof of Theorem sibfof
Dummy variables 𝑥 𝑦 𝑧 𝑝 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sibfof.1 . . . . . . . 8 (𝜑+ :(𝐵 × 𝐵)⟶𝐶)
2 sibfof.0 . . . . . . . . . . 11 (𝜑𝑊 ∈ TopSp)
3 sitgval.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑊)
4 sitgval.j . . . . . . . . . . . 12 𝐽 = (TopOpen‘𝑊)
53, 4tpsuni 21546 . . . . . . . . . . 11 (𝑊 ∈ TopSp → 𝐵 = 𝐽)
62, 5syl 17 . . . . . . . . . 10 (𝜑𝐵 = 𝐽)
76sqxpeqd 5589 . . . . . . . . 9 (𝜑 → (𝐵 × 𝐵) = ( 𝐽 × 𝐽))
87feq2d 6502 . . . . . . . 8 (𝜑 → ( + :(𝐵 × 𝐵)⟶𝐶+ :( 𝐽 × 𝐽)⟶𝐶))
91, 8mpbid 234 . . . . . . 7 (𝜑+ :( 𝐽 × 𝐽)⟶𝐶)
109fovrnda 7321 . . . . . 6 ((𝜑 ∧ (𝑧 𝐽𝑥 𝐽)) → (𝑧 + 𝑥) ∈ 𝐶)
11 sitgval.s . . . . . . 7 𝑆 = (sigaGen‘𝐽)
12 sitgval.0 . . . . . . 7 0 = (0g𝑊)
13 sitgval.x . . . . . . 7 · = ( ·𝑠𝑊)
14 sitgval.h . . . . . . 7 𝐻 = (ℝHom‘(Scalar‘𝑊))
15 sitgval.1 . . . . . . 7 (𝜑𝑊𝑉)
16 sitgval.2 . . . . . . 7 (𝜑𝑀 ran measures)
17 sibfmbl.1 . . . . . . 7 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
183, 4, 11, 12, 13, 14, 15, 16, 17sibff 31596 . . . . . 6 (𝜑𝐹: dom 𝑀 𝐽)
19 sibfof.2 . . . . . . 7 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
203, 4, 11, 12, 13, 14, 15, 16, 19sibff 31596 . . . . . 6 (𝜑𝐺: dom 𝑀 𝐽)
21 dmexg 7615 . . . . . . 7 (𝑀 ran measures → dom 𝑀 ∈ V)
22 uniexg 7468 . . . . . . 7 (dom 𝑀 ∈ V → dom 𝑀 ∈ V)
2316, 21, 223syl 18 . . . . . 6 (𝜑 dom 𝑀 ∈ V)
24 inidm 4197 . . . . . 6 ( dom 𝑀 dom 𝑀) = dom 𝑀
2510, 18, 20, 23, 23, 24off 7426 . . . . 5 (𝜑 → (𝐹f + 𝐺): dom 𝑀𝐶)
26 sibfof.3 . . . . . . . 8 (𝜑𝐾 ∈ TopSp)
27 sibfof.c . . . . . . . . 9 𝐶 = (Base‘𝐾)
28 eqid 2823 . . . . . . . . 9 (TopOpen‘𝐾) = (TopOpen‘𝐾)
2927, 28tpsuni 21546 . . . . . . . 8 (𝐾 ∈ TopSp → 𝐶 = (TopOpen‘𝐾))
3026, 29syl 17 . . . . . . 7 (𝜑𝐶 = (TopOpen‘𝐾))
31 fvex 6685 . . . . . . . 8 (TopOpen‘𝐾) ∈ V
32 unisg 31404 . . . . . . . 8 ((TopOpen‘𝐾) ∈ V → (sigaGen‘(TopOpen‘𝐾)) = (TopOpen‘𝐾))
3331, 32ax-mp 5 . . . . . . 7 (sigaGen‘(TopOpen‘𝐾)) = (TopOpen‘𝐾)
3430, 33syl6eqr 2876 . . . . . 6 (𝜑𝐶 = (sigaGen‘(TopOpen‘𝐾)))
3534feq3d 6503 . . . . 5 (𝜑 → ((𝐹f + 𝐺): dom 𝑀𝐶 ↔ (𝐹f + 𝐺): dom 𝑀 (sigaGen‘(TopOpen‘𝐾))))
3625, 35mpbid 234 . . . 4 (𝜑 → (𝐹f + 𝐺): dom 𝑀 (sigaGen‘(TopOpen‘𝐾)))
3731a1i 11 . . . . . . 7 (𝜑 → (TopOpen‘𝐾) ∈ V)
3837sgsiga 31403 . . . . . 6 (𝜑 → (sigaGen‘(TopOpen‘𝐾)) ∈ ran sigAlgebra)
3938uniexd 7470 . . . . 5 (𝜑 (sigaGen‘(TopOpen‘𝐾)) ∈ V)
4039, 23elmapd 8422 . . . 4 (𝜑 → ((𝐹f + 𝐺) ∈ ( (sigaGen‘(TopOpen‘𝐾)) ↑m dom 𝑀) ↔ (𝐹f + 𝐺): dom 𝑀 (sigaGen‘(TopOpen‘𝐾))))
4136, 40mpbird 259 . . 3 (𝜑 → (𝐹f + 𝐺) ∈ ( (sigaGen‘(TopOpen‘𝐾)) ↑m dom 𝑀))
42 inundif 4429 . . . . . . 7 ((𝑏 ∩ ran (𝐹f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹f + 𝐺))) = 𝑏
4342imaeq2i 5929 . . . . . 6 ((𝐹f + 𝐺) “ ((𝑏 ∩ ran (𝐹f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹f + 𝐺)))) = ((𝐹f + 𝐺) “ 𝑏)
44 ffun 6519 . . . . . . . 8 ((𝐹f + 𝐺): dom 𝑀𝐶 → Fun (𝐹f + 𝐺))
45 unpreima 6835 . . . . . . . 8 (Fun (𝐹f + 𝐺) → ((𝐹f + 𝐺) “ ((𝑏 ∩ ran (𝐹f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹f + 𝐺)))) = (((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∪ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺)))))
4625, 44, 453syl 18 . . . . . . 7 (𝜑 → ((𝐹f + 𝐺) “ ((𝑏 ∩ ran (𝐹f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹f + 𝐺)))) = (((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∪ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺)))))
4746adantr 483 . . . . . 6 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((𝐹f + 𝐺) “ ((𝑏 ∩ ran (𝐹f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹f + 𝐺)))) = (((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∪ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺)))))
4843, 47syl5eqr 2872 . . . . 5 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((𝐹f + 𝐺) “ 𝑏) = (((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∪ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺)))))
49 dmmeas 31462 . . . . . . . 8 (𝑀 ran measures → dom 𝑀 ran sigAlgebra)
5016, 49syl 17 . . . . . . 7 (𝜑 → dom 𝑀 ran sigAlgebra)
5150adantr 483 . . . . . 6 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → dom 𝑀 ran sigAlgebra)
52 imaiun 7006 . . . . . . . 8 ((𝐹f + 𝐺) “ 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺)){𝑧}) = 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧})
53 iunid 4986 . . . . . . . . 9 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺)){𝑧} = (𝑏 ∩ ran (𝐹f + 𝐺))
5453imaeq2i 5929 . . . . . . . 8 ((𝐹f + 𝐺) “ 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺)){𝑧}) = ((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺)))
5552, 54eqtr3i 2848 . . . . . . 7 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) = ((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺)))
56 inss2 4208 . . . . . . . . . 10 (𝑏 ∩ ran (𝐹f + 𝐺)) ⊆ ran (𝐹f + 𝐺)
576feq3d 6503 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹: dom 𝑀𝐵𝐹: dom 𝑀 𝐽))
5818, 57mpbird 259 . . . . . . . . . . . . . 14 (𝜑𝐹: dom 𝑀𝐵)
596feq3d 6503 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺: dom 𝑀𝐵𝐺: dom 𝑀 𝐽))
6020, 59mpbird 259 . . . . . . . . . . . . . 14 (𝜑𝐺: dom 𝑀𝐵)
611ffnd 6517 . . . . . . . . . . . . . 14 (𝜑+ Fn (𝐵 × 𝐵))
6258, 60, 23, 61ofpreima2 30413 . . . . . . . . . . . . 13 (𝜑 → ((𝐹f + 𝐺) “ {𝑧}) = 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
6362adantr 483 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → ((𝐹f + 𝐺) “ {𝑧}) = 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
6450adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → dom 𝑀 ran sigAlgebra)
6550ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → dom 𝑀 ran sigAlgebra)
66 simpll 765 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝜑)
67 inss1 4207 . . . . . . . . . . . . . . . . . 18 (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ ( + “ {𝑧})
68 cnvimass 5951 . . . . . . . . . . . . . . . . . . . 20 ( + “ {𝑧}) ⊆ dom +
6968, 1fssdm 6532 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ( + “ {𝑧}) ⊆ (𝐵 × 𝐵))
7069adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → ( + “ {𝑧}) ⊆ (𝐵 × 𝐵))
7167, 70sstrid 3980 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (𝐵 × 𝐵))
7271sselda 3969 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (𝐵 × 𝐵))
7350adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → dom 𝑀 ran sigAlgebra)
74 sibfof.4 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐽 ∈ Fre)
7574sgsiga 31403 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (sigaGen‘𝐽) ∈ ran sigAlgebra)
7611, 75eqeltrid 2919 . . . . . . . . . . . . . . . . . 18 (𝜑𝑆 ran sigAlgebra)
7776adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → 𝑆 ran sigAlgebra)
783, 4, 11, 12, 13, 14, 15, 16, 17sibfmbl 31595 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ∈ (dom 𝑀MblFnM𝑆))
7978adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → 𝐹 ∈ (dom 𝑀MblFnM𝑆))
804tpstop 21547 . . . . . . . . . . . . . . . . . . . . 21 (𝑊 ∈ TopSp → 𝐽 ∈ Top)
81 cldssbrsiga 31448 . . . . . . . . . . . . . . . . . . . . 21 (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
822, 80, 813syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
8382adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
8474adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → 𝐽 ∈ Fre)
85 xp1st 7723 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (𝐵 × 𝐵) → (1st𝑝) ∈ 𝐵)
8685adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (1st𝑝) ∈ 𝐵)
876adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → 𝐵 = 𝐽)
8886, 87eleqtrd 2917 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (1st𝑝) ∈ 𝐽)
89 eqid 2823 . . . . . . . . . . . . . . . . . . . . 21 𝐽 = 𝐽
9089t1sncld 21936 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ Fre ∧ (1st𝑝) ∈ 𝐽) → {(1st𝑝)} ∈ (Clsd‘𝐽))
9184, 88, 90syl2anc 586 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(1st𝑝)} ∈ (Clsd‘𝐽))
9283, 91sseldd 3970 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(1st𝑝)} ∈ (sigaGen‘𝐽))
9392, 11eleqtrrdi 2926 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(1st𝑝)} ∈ 𝑆)
9473, 77, 79, 93mbfmcnvima 31517 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (𝐹 “ {(1st𝑝)}) ∈ dom 𝑀)
9566, 72, 94syl2anc 586 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝐹 “ {(1st𝑝)}) ∈ dom 𝑀)
963, 4, 11, 12, 13, 14, 15, 16, 19sibfmbl 31595 . . . . . . . . . . . . . . . . . 18 (𝜑𝐺 ∈ (dom 𝑀MblFnM𝑆))
9796adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → 𝐺 ∈ (dom 𝑀MblFnM𝑆))
98 xp2nd 7724 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (𝐵 × 𝐵) → (2nd𝑝) ∈ 𝐵)
9998adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (2nd𝑝) ∈ 𝐵)
10099, 87eleqtrd 2917 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (2nd𝑝) ∈ 𝐽)
10189t1sncld 21936 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ Fre ∧ (2nd𝑝) ∈ 𝐽) → {(2nd𝑝)} ∈ (Clsd‘𝐽))
10284, 100, 101syl2anc 586 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(2nd𝑝)} ∈ (Clsd‘𝐽))
10383, 102sseldd 3970 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(2nd𝑝)} ∈ (sigaGen‘𝐽))
104103, 11eleqtrrdi 2926 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(2nd𝑝)} ∈ 𝑆)
10573, 77, 97, 104mbfmcnvima 31517 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (𝐺 “ {(2nd𝑝)}) ∈ dom 𝑀)
10666, 72, 105syl2anc 586 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝐺 “ {(2nd𝑝)}) ∈ dom 𝑀)
107 inelsiga 31396 . . . . . . . . . . . . . . 15 ((dom 𝑀 ran sigAlgebra ∧ (𝐹 “ {(1st𝑝)}) ∈ dom 𝑀 ∧ (𝐺 “ {(2nd𝑝)}) ∈ dom 𝑀) → ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
10865, 95, 106, 107syl3anc 1367 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
109108ralrimiva 3184 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → ∀𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
1103, 4, 11, 12, 13, 14, 15, 16, 17sibfrn 31597 . . . . . . . . . . . . . . . . 17 (𝜑 → ran 𝐹 ∈ Fin)
1113, 4, 11, 12, 13, 14, 15, 16, 19sibfrn 31597 . . . . . . . . . . . . . . . . 17 (𝜑 → ran 𝐺 ∈ Fin)
112 xpfi 8791 . . . . . . . . . . . . . . . . 17 ((ran 𝐹 ∈ Fin ∧ ran 𝐺 ∈ Fin) → (ran 𝐹 × ran 𝐺) ∈ Fin)
113110, 111, 112syl2anc 586 . . . . . . . . . . . . . . . 16 (𝜑 → (ran 𝐹 × ran 𝐺) ∈ Fin)
114 inss2 4208 . . . . . . . . . . . . . . . 16 (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺)
115 ssdomg 8557 . . . . . . . . . . . . . . . 16 ((ran 𝐹 × ran 𝐺) ∈ Fin → ((( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ (ran 𝐹 × ran 𝐺)))
116113, 114, 115mpisyl 21 . . . . . . . . . . . . . . 15 (𝜑 → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ (ran 𝐹 × ran 𝐺))
117 isfinite 9117 . . . . . . . . . . . . . . . . 17 ((ran 𝐹 × ran 𝐺) ∈ Fin ↔ (ran 𝐹 × ran 𝐺) ≺ ω)
118117biimpi 218 . . . . . . . . . . . . . . . 16 ((ran 𝐹 × ran 𝐺) ∈ Fin → (ran 𝐹 × ran 𝐺) ≺ ω)
119 sdomdom 8539 . . . . . . . . . . . . . . . 16 ((ran 𝐹 × ran 𝐺) ≺ ω → (ran 𝐹 × ran 𝐺) ≼ ω)
120113, 118, 1193syl 18 . . . . . . . . . . . . . . 15 (𝜑 → (ran 𝐹 × ran 𝐺) ≼ ω)
121 domtr 8564 . . . . . . . . . . . . . . 15 (((( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ (ran 𝐹 × ran 𝐺) ∧ (ran 𝐹 × ran 𝐺) ≼ ω) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω)
122116, 120, 121syl2anc 586 . . . . . . . . . . . . . 14 (𝜑 → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω)
123122adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω)
124 nfcv 2979 . . . . . . . . . . . . . 14 𝑝(( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))
125124sigaclcuni 31379 . . . . . . . . . . . . 13 ((dom 𝑀 ran sigAlgebra ∧ ∀𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀 ∧ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω) → 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
12664, 109, 123, 125syl3anc 1367 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
12763, 126eqeltrd 2915 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → ((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀)
128127ralrimiva 3184 . . . . . . . . . 10 (𝜑 → ∀𝑧 ∈ ran (𝐹f + 𝐺)((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀)
129 ssralv 4035 . . . . . . . . . 10 ((𝑏 ∩ ran (𝐹f + 𝐺)) ⊆ ran (𝐹f + 𝐺) → (∀𝑧 ∈ ran (𝐹f + 𝐺)((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀 → ∀𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀))
13056, 128, 129mpsyl 68 . . . . . . . . 9 (𝜑 → ∀𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀)
131130adantr 483 . . . . . . . 8 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ∀𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀)
1321ffund 6520 . . . . . . . . . . . . 13 (𝜑 → Fun + )
133 imafi 8819 . . . . . . . . . . . . 13 ((Fun + ∧ (ran 𝐹 × ran 𝐺) ∈ Fin) → ( + “ (ran 𝐹 × ran 𝐺)) ∈ Fin)
134132, 113, 133syl2anc 586 . . . . . . . . . . . 12 (𝜑 → ( + “ (ran 𝐹 × ran 𝐺)) ∈ Fin)
13518, 20, 9, 23ofrn2 30389 . . . . . . . . . . . 12 (𝜑 → ran (𝐹f + 𝐺) ⊆ ( + “ (ran 𝐹 × ran 𝐺)))
136 ssfi 8740 . . . . . . . . . . . 12 ((( + “ (ran 𝐹 × ran 𝐺)) ∈ Fin ∧ ran (𝐹f + 𝐺) ⊆ ( + “ (ran 𝐹 × ran 𝐺))) → ran (𝐹f + 𝐺) ∈ Fin)
137134, 135, 136syl2anc 586 . . . . . . . . . . 11 (𝜑 → ran (𝐹f + 𝐺) ∈ Fin)
138 ssdomg 8557 . . . . . . . . . . 11 (ran (𝐹f + 𝐺) ∈ Fin → ((𝑏 ∩ ran (𝐹f + 𝐺)) ⊆ ran (𝐹f + 𝐺) → (𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ran (𝐹f + 𝐺)))
139137, 56, 138mpisyl 21 . . . . . . . . . 10 (𝜑 → (𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ran (𝐹f + 𝐺))
140 isfinite 9117 . . . . . . . . . . . 12 (ran (𝐹f + 𝐺) ∈ Fin ↔ ran (𝐹f + 𝐺) ≺ ω)
141137, 140sylib 220 . . . . . . . . . . 11 (𝜑 → ran (𝐹f + 𝐺) ≺ ω)
142 sdomdom 8539 . . . . . . . . . . 11 (ran (𝐹f + 𝐺) ≺ ω → ran (𝐹f + 𝐺) ≼ ω)
143141, 142syl 17 . . . . . . . . . 10 (𝜑 → ran (𝐹f + 𝐺) ≼ ω)
144 domtr 8564 . . . . . . . . . 10 (((𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ran (𝐹f + 𝐺) ∧ ran (𝐹f + 𝐺) ≼ ω) → (𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ω)
145139, 143, 144syl2anc 586 . . . . . . . . 9 (𝜑 → (𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ω)
146145adantr 483 . . . . . . . 8 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → (𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ω)
147 nfcv 2979 . . . . . . . . 9 𝑧(𝑏 ∩ ran (𝐹f + 𝐺))
148147sigaclcuni 31379 . . . . . . . 8 ((dom 𝑀 ran sigAlgebra ∧ ∀𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀 ∧ (𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ω) → 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀)
14951, 131, 146, 148syl3anc 1367 . . . . . . 7 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀)
15055, 149eqeltrrid 2920 . . . . . 6 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∈ dom 𝑀)
151 difpreima 6837 . . . . . . . . . 10 (Fun (𝐹f + 𝐺) → ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺))) = (((𝐹f + 𝐺) “ 𝑏) ∖ ((𝐹f + 𝐺) “ ran (𝐹f + 𝐺))))
15225, 44, 1513syl 18 . . . . . . . . 9 (𝜑 → ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺))) = (((𝐹f + 𝐺) “ 𝑏) ∖ ((𝐹f + 𝐺) “ ran (𝐹f + 𝐺))))
153 cnvimarndm 5952 . . . . . . . . . . 11 ((𝐹f + 𝐺) “ ran (𝐹f + 𝐺)) = dom (𝐹f + 𝐺)
154153difeq2i 4098 . . . . . . . . . 10 (((𝐹f + 𝐺) “ 𝑏) ∖ ((𝐹f + 𝐺) “ ran (𝐹f + 𝐺))) = (((𝐹f + 𝐺) “ 𝑏) ∖ dom (𝐹f + 𝐺))
155 cnvimass 5951 . . . . . . . . . . 11 ((𝐹f + 𝐺) “ 𝑏) ⊆ dom (𝐹f + 𝐺)
156 ssdif0 4325 . . . . . . . . . . 11 (((𝐹f + 𝐺) “ 𝑏) ⊆ dom (𝐹f + 𝐺) ↔ (((𝐹f + 𝐺) “ 𝑏) ∖ dom (𝐹f + 𝐺)) = ∅)
157155, 156mpbi 232 . . . . . . . . . 10 (((𝐹f + 𝐺) “ 𝑏) ∖ dom (𝐹f + 𝐺)) = ∅
158154, 157eqtri 2846 . . . . . . . . 9 (((𝐹f + 𝐺) “ 𝑏) ∖ ((𝐹f + 𝐺) “ ran (𝐹f + 𝐺))) = ∅
159152, 158syl6eq 2874 . . . . . . . 8 (𝜑 → ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺))) = ∅)
160 0elsiga 31375 . . . . . . . . 9 (dom 𝑀 ran sigAlgebra → ∅ ∈ dom 𝑀)
16116, 49, 1603syl 18 . . . . . . . 8 (𝜑 → ∅ ∈ dom 𝑀)
162159, 161eqeltrd 2915 . . . . . . 7 (𝜑 → ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺))) ∈ dom 𝑀)
163162adantr 483 . . . . . 6 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺))) ∈ dom 𝑀)
164 unelsiga 31395 . . . . . 6 ((dom 𝑀 ran sigAlgebra ∧ ((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∈ dom 𝑀 ∧ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺))) ∈ dom 𝑀) → (((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∪ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺)))) ∈ dom 𝑀)
16551, 150, 163, 164syl3anc 1367 . . . . 5 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → (((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∪ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺)))) ∈ dom 𝑀)
16648, 165eqeltrd 2915 . . . 4 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((𝐹f + 𝐺) “ 𝑏) ∈ dom 𝑀)
167166ralrimiva 3184 . . 3 (𝜑 → ∀𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))((𝐹f + 𝐺) “ 𝑏) ∈ dom 𝑀)
16850, 38ismbfm 31512 . . 3 (𝜑 → ((𝐹f + 𝐺) ∈ (dom 𝑀MblFnM(sigaGen‘(TopOpen‘𝐾))) ↔ ((𝐹f + 𝐺) ∈ ( (sigaGen‘(TopOpen‘𝐾)) ↑m dom 𝑀) ∧ ∀𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))((𝐹f + 𝐺) “ 𝑏) ∈ dom 𝑀)))
16941, 167, 168mpbir2and 711 . 2 (𝜑 → (𝐹f + 𝐺) ∈ (dom 𝑀MblFnM(sigaGen‘(TopOpen‘𝐾))))
17062adantr 483 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → ((𝐹f + 𝐺) “ {𝑧}) = 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
171170fveq2d 6676 . . . . . 6 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (𝑀‘((𝐹f + 𝐺) “ {𝑧})) = (𝑀 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
172 measbasedom 31463 . . . . . . . . 9 (𝑀 ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀))
17316, 172sylib 220 . . . . . . . 8 (𝜑𝑀 ∈ (measures‘dom 𝑀))
174173adantr 483 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → 𝑀 ∈ (measures‘dom 𝑀))
175 eldifi 4105 . . . . . . . 8 (𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)}) → 𝑧 ∈ ran (𝐹f + 𝐺))
176175, 109sylan2 594 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → ∀𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
177122adantr 483 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω)
178 sneq 4579 . . . . . . . . . . 11 (𝑥 = (1st𝑝) → {𝑥} = {(1st𝑝)})
179178imaeq2d 5931 . . . . . . . . . 10 (𝑥 = (1st𝑝) → (𝐹 “ {𝑥}) = (𝐹 “ {(1st𝑝)}))
180 sneq 4579 . . . . . . . . . . 11 (𝑦 = (2nd𝑝) → {𝑦} = {(2nd𝑝)})
181180imaeq2d 5931 . . . . . . . . . 10 (𝑦 = (2nd𝑝) → (𝐺 “ {𝑦}) = (𝐺 “ {(2nd𝑝)}))
18218ffund 6520 . . . . . . . . . . 11 (𝜑 → Fun 𝐹)
183 sndisj 5059 . . . . . . . . . . 11 Disj 𝑥 ∈ ran 𝐹{𝑥}
184 disjpreima 30336 . . . . . . . . . . 11 ((Fun 𝐹Disj 𝑥 ∈ ran 𝐹{𝑥}) → Disj 𝑥 ∈ ran 𝐹(𝐹 “ {𝑥}))
185182, 183, 184sylancl 588 . . . . . . . . . 10 (𝜑Disj 𝑥 ∈ ran 𝐹(𝐹 “ {𝑥}))
18620ffund 6520 . . . . . . . . . . 11 (𝜑 → Fun 𝐺)
187 sndisj 5059 . . . . . . . . . . 11 Disj 𝑦 ∈ ran 𝐺{𝑦}
188 disjpreima 30336 . . . . . . . . . . 11 ((Fun 𝐺Disj 𝑦 ∈ ran 𝐺{𝑦}) → Disj 𝑦 ∈ ran 𝐺(𝐺 “ {𝑦}))
189186, 187, 188sylancl 588 . . . . . . . . . 10 (𝜑Disj 𝑦 ∈ ran 𝐺(𝐺 “ {𝑦}))
190179, 181, 185, 189disjxpin 30340 . . . . . . . . 9 (𝜑Disj 𝑝 ∈ (ran 𝐹 × ran 𝐺)((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
191 disjss1 5039 . . . . . . . . 9 ((( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺) → (Disj 𝑝 ∈ (ran 𝐹 × ran 𝐺)((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) → Disj 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
192114, 190, 191mpsyl 68 . . . . . . . 8 (𝜑Disj 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
193192adantr 483 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → Disj 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
194 measvuni 31475 . . . . . . 7 ((𝑀 ∈ (measures‘dom 𝑀) ∧ ∀𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀 ∧ ((( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω ∧ Disj 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) → (𝑀 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) = Σ*𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
195174, 176, 177, 193, 194syl112anc 1370 . . . . . 6 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (𝑀 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) = Σ*𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
196 ssfi 8740 . . . . . . . . 9 (((ran 𝐹 × ran 𝐺) ∈ Fin ∧ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺)) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ∈ Fin)
197113, 114, 196sylancl 588 . . . . . . . 8 (𝜑 → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ∈ Fin)
198197adantr 483 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ∈ Fin)
199 simpll 765 . . . . . . . 8 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝜑)
200 simpr 487 . . . . . . . . . 10 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)))
201114, 200sseldi 3967 . . . . . . . . 9 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (ran 𝐹 × ran 𝐺))
202 xp1st 7723 . . . . . . . . 9 (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (1st𝑝) ∈ ran 𝐹)
203201, 202syl 17 . . . . . . . 8 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (1st𝑝) ∈ ran 𝐹)
204 xp2nd 7724 . . . . . . . . 9 (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (2nd𝑝) ∈ ran 𝐺)
205201, 204syl 17 . . . . . . . 8 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (2nd𝑝) ∈ ran 𝐺)
206 oveq12 7167 . . . . . . . . . . . . . . . 16 ((𝑥 = 0𝑦 = 0 ) → (𝑥 + 𝑦) = ( 0 + 0 ))
207 sibfof.5 . . . . . . . . . . . . . . . 16 (𝜑 → ( 0 + 0 ) = (0g𝐾))
208206, 207sylan9eqr 2880 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 = 0𝑦 = 0 )) → (𝑥 + 𝑦) = (0g𝐾))
209208ex 415 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥 = 0𝑦 = 0 ) → (𝑥 + 𝑦) = (0g𝐾)))
210209necon3ad 3031 . . . . . . . . . . . . 13 (𝜑 → ((𝑥 + 𝑦) ≠ (0g𝐾) → ¬ (𝑥 = 0𝑦 = 0 )))
211 neorian 3113 . . . . . . . . . . . . 13 ((𝑥0𝑦0 ) ↔ ¬ (𝑥 = 0𝑦 = 0 ))
212210, 211syl6ibr 254 . . . . . . . . . . . 12 (𝜑 → ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )))
213212adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )))
214213ralrimivva 3193 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )))
215199, 214syl 17 . . . . . . . . 9 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )))
21667a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ ( + “ {𝑧}))
217216sselda 3969 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ ( + “ {𝑧}))
218 fniniseg 6832 . . . . . . . . . . . . 13 ( + Fn (𝐵 × 𝐵) → (𝑝 ∈ ( + “ {𝑧}) ↔ (𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧)))
219199, 61, 2183syl 18 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑝 ∈ ( + “ {𝑧}) ↔ (𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧)))
220217, 219mpbid 234 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧))
221 simpr 487 . . . . . . . . . . . 12 ((𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧) → ( +𝑝) = 𝑧)
222 1st2nd2 7730 . . . . . . . . . . . . . . 15 (𝑝 ∈ (𝐵 × 𝐵) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
223222fveq2d 6676 . . . . . . . . . . . . . 14 (𝑝 ∈ (𝐵 × 𝐵) → ( +𝑝) = ( + ‘⟨(1st𝑝), (2nd𝑝)⟩))
224 df-ov 7161 . . . . . . . . . . . . . 14 ((1st𝑝) + (2nd𝑝)) = ( + ‘⟨(1st𝑝), (2nd𝑝)⟩)
225223, 224syl6eqr 2876 . . . . . . . . . . . . 13 (𝑝 ∈ (𝐵 × 𝐵) → ( +𝑝) = ((1st𝑝) + (2nd𝑝)))
226225adantr 483 . . . . . . . . . . . 12 ((𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧) → ( +𝑝) = ((1st𝑝) + (2nd𝑝)))
227221, 226eqtr3d 2860 . . . . . . . . . . 11 ((𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧) → 𝑧 = ((1st𝑝) + (2nd𝑝)))
228220, 227syl 17 . . . . . . . . . 10 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑧 = ((1st𝑝) + (2nd𝑝)))
229 simplr 767 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)}))
230229eldifbd 3951 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ¬ 𝑧 ∈ {(0g𝐾)})
231 velsn 4585 . . . . . . . . . . . 12 (𝑧 ∈ {(0g𝐾)} ↔ 𝑧 = (0g𝐾))
232231necon3bbii 3065 . . . . . . . . . . 11 𝑧 ∈ {(0g𝐾)} ↔ 𝑧 ≠ (0g𝐾))
233230, 232sylib 220 . . . . . . . . . 10 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑧 ≠ (0g𝐾))
234228, 233eqnetrrd 3086 . . . . . . . . 9 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((1st𝑝) + (2nd𝑝)) ≠ (0g𝐾))
235175, 72sylanl2 679 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (𝐵 × 𝐵))
236235, 85syl 17 . . . . . . . . . 10 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (1st𝑝) ∈ 𝐵)
237235, 98syl 17 . . . . . . . . . 10 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (2nd𝑝) ∈ 𝐵)
238 oveq1 7165 . . . . . . . . . . . . 13 (𝑥 = (1st𝑝) → (𝑥 + 𝑦) = ((1st𝑝) + 𝑦))
239238neeq1d 3077 . . . . . . . . . . . 12 (𝑥 = (1st𝑝) → ((𝑥 + 𝑦) ≠ (0g𝐾) ↔ ((1st𝑝) + 𝑦) ≠ (0g𝐾)))
240 neeq1 3080 . . . . . . . . . . . . 13 (𝑥 = (1st𝑝) → (𝑥0 ↔ (1st𝑝) ≠ 0 ))
241240orbi1d 913 . . . . . . . . . . . 12 (𝑥 = (1st𝑝) → ((𝑥0𝑦0 ) ↔ ((1st𝑝) ≠ 0𝑦0 )))
242239, 241imbi12d 347 . . . . . . . . . . 11 (𝑥 = (1st𝑝) → (((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )) ↔ (((1st𝑝) + 𝑦) ≠ (0g𝐾) → ((1st𝑝) ≠ 0𝑦0 ))))
243 oveq2 7166 . . . . . . . . . . . . 13 (𝑦 = (2nd𝑝) → ((1st𝑝) + 𝑦) = ((1st𝑝) + (2nd𝑝)))
244243neeq1d 3077 . . . . . . . . . . . 12 (𝑦 = (2nd𝑝) → (((1st𝑝) + 𝑦) ≠ (0g𝐾) ↔ ((1st𝑝) + (2nd𝑝)) ≠ (0g𝐾)))
245 neeq1 3080 . . . . . . . . . . . . 13 (𝑦 = (2nd𝑝) → (𝑦0 ↔ (2nd𝑝) ≠ 0 ))
246245orbi2d 912 . . . . . . . . . . . 12 (𝑦 = (2nd𝑝) → (((1st𝑝) ≠ 0𝑦0 ) ↔ ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 )))
247244, 246imbi12d 347 . . . . . . . . . . 11 (𝑦 = (2nd𝑝) → ((((1st𝑝) + 𝑦) ≠ (0g𝐾) → ((1st𝑝) ≠ 0𝑦0 )) ↔ (((1st𝑝) + (2nd𝑝)) ≠ (0g𝐾) → ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))))
248242, 247rspc2v 3635 . . . . . . . . . 10 (((1st𝑝) ∈ 𝐵 ∧ (2nd𝑝) ∈ 𝐵) → (∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )) → (((1st𝑝) + (2nd𝑝)) ≠ (0g𝐾) → ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))))
249236, 237, 248syl2anc 586 . . . . . . . . 9 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )) → (((1st𝑝) + (2nd𝑝)) ≠ (0g𝐾) → ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))))
250215, 234, 249mp2d 49 . . . . . . . 8 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))
2513, 4, 11, 12, 13, 14, 15, 16, 17, 19, 2, 74sibfinima 31599 . . . . . . . 8 (((𝜑 ∧ (1st𝑝) ∈ ran 𝐹 ∧ (2nd𝑝) ∈ ran 𝐺) ∧ ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 )) → (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ (0[,)+∞))
252199, 203, 205, 250, 251syl31anc 1369 . . . . . . 7 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ (0[,)+∞))
253198, 252esumpfinval 31336 . . . . . 6 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → Σ*𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) = Σ𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
254171, 195, 2533eqtrd 2862 . . . . 5 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (𝑀‘((𝐹f + 𝐺) “ {𝑧})) = Σ𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
255 rge0ssre 12847 . . . . . . 7 (0[,)+∞) ⊆ ℝ
256255, 252sseldi 3967 . . . . . 6 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ ℝ)
257198, 256fsumrecl 15093 . . . . 5 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → Σ𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ ℝ)
258254, 257eqeltrd 2915 . . . 4 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (𝑀‘((𝐹f + 𝐺) “ {𝑧})) ∈ ℝ)
259174adantr 483 . . . . . . 7 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑀 ∈ (measures‘dom 𝑀))
260175, 108sylanl2 679 . . . . . . 7 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
261 measge0 31468 . . . . . . 7 ((𝑀 ∈ (measures‘dom 𝑀) ∧ ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀) → 0 ≤ (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
262259, 260, 261syl2anc 586 . . . . . 6 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 0 ≤ (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
263198, 256, 262fsumge0 15152 . . . . 5 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → 0 ≤ Σ𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
264263, 254breqtrrd 5096 . . . 4 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → 0 ≤ (𝑀‘((𝐹f + 𝐺) “ {𝑧})))
265 elrege0 12845 . . . 4 ((𝑀‘((𝐹f + 𝐺) “ {𝑧})) ∈ (0[,)+∞) ↔ ((𝑀‘((𝐹f + 𝐺) “ {𝑧})) ∈ ℝ ∧ 0 ≤ (𝑀‘((𝐹f + 𝐺) “ {𝑧}))))
266258, 264, 265sylanbrc 585 . . 3 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (𝑀‘((𝐹f + 𝐺) “ {𝑧})) ∈ (0[,)+∞))
267266ralrimiva 3184 . 2 (𝜑 → ∀𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})(𝑀‘((𝐹f + 𝐺) “ {𝑧})) ∈ (0[,)+∞))
268 eqid 2823 . . 3 (sigaGen‘(TopOpen‘𝐾)) = (sigaGen‘(TopOpen‘𝐾))
269 eqid 2823 . . 3 (0g𝐾) = (0g𝐾)
270 eqid 2823 . . 3 ( ·𝑠𝐾) = ( ·𝑠𝐾)
271 eqid 2823 . . 3 (ℝHom‘(Scalar‘𝐾)) = (ℝHom‘(Scalar‘𝐾))
27227, 28, 268, 269, 270, 271, 26, 16issibf 31593 . 2 (𝜑 → ((𝐹f + 𝐺) ∈ dom (𝐾sitg𝑀) ↔ ((𝐹f + 𝐺) ∈ (dom 𝑀MblFnM(sigaGen‘(TopOpen‘𝐾))) ∧ ran (𝐹f + 𝐺) ∈ Fin ∧ ∀𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})(𝑀‘((𝐹f + 𝐺) “ {𝑧})) ∈ (0[,)+∞))))
273169, 137, 267, 272mpbir3and 1338 1 (𝜑 → (𝐹f + 𝐺) ∈ dom (𝐾sitg𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3018  wral 3140  Vcvv 3496  cdif 3935  cun 3936  cin 3937  wss 3938  c0 4293  {csn 4569  cop 4575   cuni 4840   ciun 4921  Disj wdisj 5033   class class class wbr 5068   × cxp 5555  ccnv 5556  dom cdm 5557  ran crn 5558  cima 5560  Fun wfun 6351   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  f cof 7409  ωcom 7582  1st c1st 7689  2nd c2nd 7690  m cmap 8408  cdom 8509  csdm 8510  Fincfn 8511  cr 10538  0cc0 10539  +∞cpnf 10674  cle 10678  [,)cico 12743  Σcsu 15044  Basecbs 16485  Scalarcsca 16570   ·𝑠 cvsca 16571  TopOpenctopn 16697  0gc0g 16715  Topctop 21503  TopSpctps 21542  Clsdccld 21626  Frect1 21917  ℝHomcrrh 31236  Σ*cesum 31288  sigAlgebracsiga 31369  sigaGencsigagen 31399  measurescmeas 31456  MblFnMcmbfm 31510  sitgcsitg 31589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-ac2 9887  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-disj 5034  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-acn 9373  df-ac 9544  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-pi 15428  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-ordt 16776  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-ps 17812  df-tsr 17813  df-plusf 17853  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mulg 18227  df-subg 18278  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-cring 19302  df-subrg 19535  df-abv 19590  df-lmod 19638  df-scaf 19639  df-sra 19946  df-rgmod 19947  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-t1 21924  df-haus 21925  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-tmd 22682  df-tgp 22683  df-tsms 22737  df-trg 22770  df-xms 22932  df-ms 22933  df-tms 22934  df-nm 23194  df-ngp 23195  df-nrg 23197  df-nlm 23198  df-ii 23487  df-cncf 23488  df-limc 24466  df-dv 24467  df-log 25142  df-esum 31289  df-siga 31370  df-sigagen 31400  df-meas 31457  df-mbfm 31511  df-sitg 31590
This theorem is referenced by:  sitmcl  31611
  Copyright terms: Public domain W3C validator