![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigaclcu | Structured version Visualization version GIF version |
Description: A sigma-algebra is closed under countable union. (Contributed by Thierry Arnoux, 26-Dec-2016.) |
Ref | Expression |
---|---|
sigaclcu | ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ∧ 𝐴 ≼ ω) → ∪ 𝐴 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1132 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ∧ 𝐴 ≼ ω) → 𝐴 ∈ 𝒫 𝑆) | |
2 | isrnsiga 30485 | . . . . 5 ⊢ (𝑆 ∈ ∪ ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))))) | |
3 | 2 | simprbi 483 | . . . 4 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)))) |
4 | simpr3 1238 | . . . . 5 ⊢ ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))) → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)) | |
5 | 4 | exlimiv 2007 | . . . 4 ⊢ (∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))) → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)) |
6 | 3, 5 | syl 17 | . . 3 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)) |
7 | 6 | 3ad2ant1 1128 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ∧ 𝐴 ≼ ω) → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)) |
8 | simp3 1133 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ∧ 𝐴 ≼ ω) → 𝐴 ≼ ω) | |
9 | breq1 4807 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ≼ ω ↔ 𝐴 ≼ ω)) | |
10 | unieq 4596 | . . . . 5 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
11 | 10 | eleq1d 2824 | . . . 4 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ 𝑆 ↔ ∪ 𝐴 ∈ 𝑆)) |
12 | 9, 11 | imbi12d 333 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆) ↔ (𝐴 ≼ ω → ∪ 𝐴 ∈ 𝑆))) |
13 | 12 | rspcv 3445 | . 2 ⊢ (𝐴 ∈ 𝒫 𝑆 → (∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆) → (𝐴 ≼ ω → ∪ 𝐴 ∈ 𝑆))) |
14 | 1, 7, 8, 13 | syl3c 66 | 1 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ∧ 𝐴 ≼ ω) → ∪ 𝐴 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∃wex 1853 ∈ wcel 2139 ∀wral 3050 Vcvv 3340 ∖ cdif 3712 ⊆ wss 3715 𝒫 cpw 4302 ∪ cuni 4588 class class class wbr 4804 ran crn 5267 ωcom 7230 ≼ cdom 8119 sigAlgebracsiga 30479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-fv 6057 df-siga 30480 |
This theorem is referenced by: sigaclcuni 30490 sigaclfu 30491 sigaclcu2 30492 sigainb 30508 elsigagen2 30520 sigaldsys 30531 measinb 30593 measres 30594 measdivcstOLD 30596 measdivcst 30597 imambfm 30633 totprobd 30797 dstrvprob 30842 |
Copyright terms: Public domain | W3C validator |