![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigagensiga | Structured version Visualization version GIF version |
Description: A generated sigma-algebra is a sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
Ref | Expression |
---|---|
sigagensiga | ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) ∈ (sigAlgebra‘∪ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sigagenval 30331 | . 2 ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) = ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) | |
2 | fvex 6239 | . . . . 5 ⊢ (sigaGen‘𝐴) ∈ V | |
3 | 1, 2 | syl6eqelr 2739 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ V) |
4 | intex 4850 | . . . 4 ⊢ ({𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ≠ ∅ ↔ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ V) | |
5 | 3, 4 | sylibr 224 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ≠ ∅) |
6 | ssrab2 3720 | . . . . 5 ⊢ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ⊆ (sigAlgebra‘∪ 𝐴) | |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ⊆ (sigAlgebra‘∪ 𝐴)) |
8 | fvex 6239 | . . . . 5 ⊢ (sigAlgebra‘∪ 𝐴) ∈ V | |
9 | 8 | elpw2 4858 | . . . 4 ⊢ ({𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ 𝒫 (sigAlgebra‘∪ 𝐴) ↔ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ⊆ (sigAlgebra‘∪ 𝐴)) |
10 | 7, 9 | sylibr 224 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ 𝒫 (sigAlgebra‘∪ 𝐴)) |
11 | insiga 30328 | . . 3 ⊢ (({𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ≠ ∅ ∧ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ 𝒫 (sigAlgebra‘∪ 𝐴)) → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ (sigAlgebra‘∪ 𝐴)) | |
12 | 5, 10, 11 | syl2anc 694 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ (sigAlgebra‘∪ 𝐴)) |
13 | 1, 12 | eqeltrd 2730 | 1 ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) ∈ (sigAlgebra‘∪ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 ≠ wne 2823 {crab 2945 Vcvv 3231 ⊆ wss 3607 ∅c0 3948 𝒫 cpw 4191 ∪ cuni 4468 ∩ cint 4507 ‘cfv 5926 sigAlgebracsiga 30298 sigaGencsigagen 30329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-int 4508 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-siga 30299 df-sigagen 30330 |
This theorem is referenced by: sgsiga 30333 unisg 30334 sigagenss2 30341 brsiga 30374 brsigarn 30375 cldssbrsiga 30378 sxsiga 30382 cnmbfm 30453 sxbrsiga 30480 |
Copyright terms: Public domain | W3C validator |