Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigainb Structured version   Visualization version   GIF version

Theorem sigainb 30429
 Description: Building a sigma-algebra from intersections with a given set. (Contributed by Thierry Arnoux, 26-Dec-2016.)
Assertion
Ref Expression
sigainb ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → (𝑆 ∩ 𝒫 𝐴) ∈ (sigAlgebra‘𝐴))

Proof of Theorem sigainb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 inex1g 4909 . . 3 (𝑆 ran sigAlgebra → (𝑆 ∩ 𝒫 𝐴) ∈ V)
21adantr 472 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → (𝑆 ∩ 𝒫 𝐴) ∈ V)
3 inss2 3942 . . 3 (𝑆 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴
43a1i 11 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → (𝑆 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴)
5 simpr 479 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → 𝐴𝑆)
6 pwidg 4281 . . . . 5 (𝐴𝑆𝐴 ∈ 𝒫 𝐴)
75, 6syl 17 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → 𝐴 ∈ 𝒫 𝐴)
85, 7elind 3906 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → 𝐴 ∈ (𝑆 ∩ 𝒫 𝐴))
9 simpll 807 . . . . . 6 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)) → 𝑆 ran sigAlgebra)
10 simplr 809 . . . . . 6 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)) → 𝐴𝑆)
11 inss1 3941 . . . . . . 7 (𝑆 ∩ 𝒫 𝐴) ⊆ 𝑆
12 simpr 479 . . . . . . 7 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)) → 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴))
1311, 12sseldi 3707 . . . . . 6 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)) → 𝑥𝑆)
14 difelsiga 30426 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝑥𝑆) → (𝐴𝑥) ∈ 𝑆)
159, 10, 13, 14syl3anc 1439 . . . . 5 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)) → (𝐴𝑥) ∈ 𝑆)
16 difss 3845 . . . . . . 7 (𝐴𝑥) ⊆ 𝐴
17 elpwg 4274 . . . . . . 7 ((𝐴𝑥) ∈ 𝑆 → ((𝐴𝑥) ∈ 𝒫 𝐴 ↔ (𝐴𝑥) ⊆ 𝐴))
1816, 17mpbiri 248 . . . . . 6 ((𝐴𝑥) ∈ 𝑆 → (𝐴𝑥) ∈ 𝒫 𝐴)
1915, 18syl 17 . . . . 5 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)) → (𝐴𝑥) ∈ 𝒫 𝐴)
2015, 19elind 3906 . . . 4 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)) → (𝐴𝑥) ∈ (𝑆 ∩ 𝒫 𝐴))
2120ralrimiva 3068 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → ∀𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)(𝐴𝑥) ∈ (𝑆 ∩ 𝒫 𝐴))
22 simplll 815 . . . . . . 7 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑆 ran sigAlgebra)
23 simplr 809 . . . . . . . 8 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴))
24 elpwi 4276 . . . . . . . . 9 (𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴) → 𝑥 ⊆ (𝑆 ∩ 𝒫 𝐴))
25 sstr 3717 . . . . . . . . . 10 ((𝑥 ⊆ (𝑆 ∩ 𝒫 𝐴) ∧ (𝑆 ∩ 𝒫 𝐴) ⊆ 𝑆) → 𝑥𝑆)
2611, 25mpan2 709 . . . . . . . . 9 (𝑥 ⊆ (𝑆 ∩ 𝒫 𝐴) → 𝑥𝑆)
2723, 24, 263syl 18 . . . . . . . 8 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥𝑆)
28 elpwg 4274 . . . . . . . . 9 (𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴) → (𝑥 ∈ 𝒫 𝑆𝑥𝑆))
2928biimpar 503 . . . . . . . 8 ((𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴) ∧ 𝑥𝑆) → 𝑥 ∈ 𝒫 𝑆)
3023, 27, 29syl2anc 696 . . . . . . 7 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥 ∈ 𝒫 𝑆)
31 simpr 479 . . . . . . 7 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥 ≼ ω)
32 sigaclcu 30410 . . . . . . 7 ((𝑆 ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑆𝑥 ≼ ω) → 𝑥𝑆)
3322, 30, 31, 32syl3anc 1439 . . . . . 6 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥𝑆)
34 sstr 3717 . . . . . . . . 9 ((𝑥 ⊆ (𝑆 ∩ 𝒫 𝐴) ∧ (𝑆 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴) → 𝑥 ⊆ 𝒫 𝐴)
353, 34mpan2 709 . . . . . . . 8 (𝑥 ⊆ (𝑆 ∩ 𝒫 𝐴) → 𝑥 ⊆ 𝒫 𝐴)
3623, 24, 353syl 18 . . . . . . 7 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥 ⊆ 𝒫 𝐴)
37 sspwuni 4719 . . . . . . . 8 (𝑥 ⊆ 𝒫 𝐴 𝑥𝐴)
38 vuniex 7071 . . . . . . . . 9 𝑥 ∈ V
3938elpw 4272 . . . . . . . 8 ( 𝑥 ∈ 𝒫 𝐴 𝑥𝐴)
4037, 39bitr4i 267 . . . . . . 7 (𝑥 ⊆ 𝒫 𝐴 𝑥 ∈ 𝒫 𝐴)
4136, 40sylib 208 . . . . . 6 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥 ∈ 𝒫 𝐴)
4233, 41elind 3906 . . . . 5 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴))
4342ex 449 . . . 4 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) → (𝑥 ≼ ω → 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)))
4443ralrimiva 3068 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → ∀𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)(𝑥 ≼ ω → 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)))
458, 21, 443jca 1379 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → (𝐴 ∈ (𝑆 ∩ 𝒫 𝐴) ∧ ∀𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)(𝐴𝑥) ∈ (𝑆 ∩ 𝒫 𝐴) ∧ ∀𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)(𝑥 ≼ ω → 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴))))
46 issiga 30404 . . 3 ((𝑆 ∩ 𝒫 𝐴) ∈ V → ((𝑆 ∩ 𝒫 𝐴) ∈ (sigAlgebra‘𝐴) ↔ ((𝑆 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴 ∧ (𝐴 ∈ (𝑆 ∩ 𝒫 𝐴) ∧ ∀𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)(𝐴𝑥) ∈ (𝑆 ∩ 𝒫 𝐴) ∧ ∀𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)(𝑥 ≼ ω → 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴))))))
4746biimpar 503 . 2 (((𝑆 ∩ 𝒫 𝐴) ∈ V ∧ ((𝑆 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴 ∧ (𝐴 ∈ (𝑆 ∩ 𝒫 𝐴) ∧ ∀𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)(𝐴𝑥) ∈ (𝑆 ∩ 𝒫 𝐴) ∧ ∀𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)(𝑥 ≼ ω → 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴))))) → (𝑆 ∩ 𝒫 𝐴) ∈ (sigAlgebra‘𝐴))
482, 4, 45, 47syl12anc 1437 1 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → (𝑆 ∩ 𝒫 𝐴) ∈ (sigAlgebra‘𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072   ∈ wcel 2103  ∀wral 3014  Vcvv 3304   ∖ cdif 3677   ∩ cin 3679   ⊆ wss 3680  𝒫 cpw 4266  ∪ cuni 4544   class class class wbr 4760  ran crn 5219  ‘cfv 6001  ωcom 7182   ≼ cdom 8070  sigAlgebracsiga 30400 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-ac2 9398 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-fal 1602  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-iin 4631  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-2o 7681  df-oadd 7684  df-er 7862  df-map 7976  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-oi 8531  df-card 8878  df-acn 8881  df-ac 9052  df-cda 9103  df-siga 30401 This theorem is referenced by:  measinb2  30516
 Copyright terms: Public domain W3C validator