Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigapisys Structured version   Visualization version   GIF version

Theorem sigapisys 29996
 Description: All sigma-algebras are pi-systems. (Contributed by Thierry Arnoux, 13-Jun-2020.)
Hypothesis
Ref Expression
ispisys.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
Assertion
Ref Expression
sigapisys (sigAlgebra‘𝑂) ⊆ 𝑃
Distinct variable group:   𝑂,𝑠
Allowed substitution hint:   𝑃(𝑠)

Proof of Theorem sigapisys
Dummy variables 𝑡 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sigasspw 29957 . . . . 5 (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ⊆ 𝒫 𝑂)
2 selpw 4137 . . . . 5 (𝑡 ∈ 𝒫 𝒫 𝑂𝑡 ⊆ 𝒫 𝑂)
31, 2sylibr 224 . . . 4 (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ∈ 𝒫 𝒫 𝑂)
4 elrnsiga 29967 . . . . . . 7 (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ran sigAlgebra)
54adantr 481 . . . . . 6 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑡 ran sigAlgebra)
6 eldifsn 4287 . . . . . . . . . 10 (𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅}) ↔ (𝑥 ∈ (𝒫 𝑡 ∩ Fin) ∧ 𝑥 ≠ ∅))
76biimpi 206 . . . . . . . . 9 (𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅}) → (𝑥 ∈ (𝒫 𝑡 ∩ Fin) ∧ 𝑥 ≠ ∅))
87adantl 482 . . . . . . . 8 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → (𝑥 ∈ (𝒫 𝑡 ∩ Fin) ∧ 𝑥 ≠ ∅))
98simpld 475 . . . . . . 7 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑥 ∈ (𝒫 𝑡 ∩ Fin))
109elin1d 3780 . . . . . 6 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑥 ∈ 𝒫 𝑡)
119elin2d 3781 . . . . . . 7 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑥 ∈ Fin)
12 fict 8494 . . . . . . 7 (𝑥 ∈ Fin → 𝑥 ≼ ω)
1311, 12syl 17 . . . . . 6 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑥 ≼ ω)
148simprd 479 . . . . . 6 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑥 ≠ ∅)
15 sigaclci 29973 . . . . . 6 (((𝑡 ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ 𝑥 ≠ ∅)) → 𝑥𝑡)
165, 10, 13, 14, 15syl22anc 1324 . . . . 5 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑥𝑡)
1716ralrimiva 2960 . . . 4 (𝑡 ∈ (sigAlgebra‘𝑂) → ∀𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅}) 𝑥𝑡)
183, 17jca 554 . . 3 (𝑡 ∈ (sigAlgebra‘𝑂) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅}) 𝑥𝑡))
19 ispisys.p . . . 4 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
2019ispisys2 29994 . . 3 (𝑡𝑃 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅}) 𝑥𝑡))
2118, 20sylibr 224 . 2 (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡𝑃)
2221ssriv 3587 1 (sigAlgebra‘𝑂) ⊆ 𝑃
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∀wral 2907  {crab 2911   ∖ cdif 3552   ∩ cin 3554   ⊆ wss 3555  ∅c0 3891  𝒫 cpw 4130  {csn 4148  ∪ cuni 4402  ∩ cint 4440   class class class wbr 4613  ran crn 5075  ‘cfv 5847  ωcom 7012   ≼ cdom 7897  Fincfn 7899  ficfi 8260  sigAlgebracsiga 29948 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-ac2 9229 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fi 8261  df-card 8709  df-acn 8712  df-ac 8883  df-siga 29949 This theorem is referenced by:  sigapildsys  30003
 Copyright terms: Public domain W3C validator