Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaradd Structured version   Visualization version   GIF version

Theorem sigaradd 40389
Description: Subtracting (double) area of 𝐴𝐷𝐶 from 𝐴𝐵𝐶 yields the (double) area of 𝐷𝐵𝐶. (Contributed by Saveliy Skresanov, 23-Sep-2017.)
Hypotheses
Ref Expression
sharhght.sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
sharhght.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
sharhght.b (𝜑 → (𝐷 ∈ ℂ ∧ ((𝐴𝐷)𝐺(𝐵𝐷)) = 0))
Assertion
Ref Expression
sigaradd (𝜑 → (((𝐵𝐶)𝐺(𝐴𝐶)) − ((𝐷𝐶)𝐺(𝐴𝐶))) = ((𝐵𝐶)𝐺(𝐷𝐶)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem sigaradd
StepHypRef Expression
1 sharhght.a . . . . . . . 8 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
21simp1d 1071 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
31simp3d 1073 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
4 sharhght.b . . . . . . . 8 (𝜑 → (𝐷 ∈ ℂ ∧ ((𝐴𝐷)𝐺(𝐵𝐷)) = 0))
54simpld 475 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
62, 3, 5nnncan1d 10386 . . . . . 6 (𝜑 → ((𝐴𝐶) − (𝐴𝐷)) = (𝐷𝐶))
76oveq2d 6631 . . . . 5 (𝜑 → ((𝐵𝐷)𝐺((𝐴𝐶) − (𝐴𝐷))) = ((𝐵𝐷)𝐺(𝐷𝐶)))
81simp2d 1072 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
98, 5subcld 10352 . . . . . 6 (𝜑 → (𝐵𝐷) ∈ ℂ)
102, 3subcld 10352 . . . . . 6 (𝜑 → (𝐴𝐶) ∈ ℂ)
112, 5subcld 10352 . . . . . 6 (𝜑 → (𝐴𝐷) ∈ ℂ)
12 sharhght.sigar . . . . . . 7 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
1312sigarms 40379 . . . . . 6 (((𝐵𝐷) ∈ ℂ ∧ (𝐴𝐶) ∈ ℂ ∧ (𝐴𝐷) ∈ ℂ) → ((𝐵𝐷)𝐺((𝐴𝐶) − (𝐴𝐷))) = (((𝐵𝐷)𝐺(𝐴𝐶)) − ((𝐵𝐷)𝐺(𝐴𝐷))))
149, 10, 11, 13syl3anc 1323 . . . . 5 (𝜑 → ((𝐵𝐷)𝐺((𝐴𝐶) − (𝐴𝐷))) = (((𝐵𝐷)𝐺(𝐴𝐶)) − ((𝐵𝐷)𝐺(𝐴𝐷))))
157, 14eqtr3d 2657 . . . 4 (𝜑 → ((𝐵𝐷)𝐺(𝐷𝐶)) = (((𝐵𝐷)𝐺(𝐴𝐶)) − ((𝐵𝐷)𝐺(𝐴𝐷))))
1612sigarac 40375 . . . . . . . . 9 (((𝐴𝐷) ∈ ℂ ∧ (𝐵𝐷) ∈ ℂ) → ((𝐴𝐷)𝐺(𝐵𝐷)) = -((𝐵𝐷)𝐺(𝐴𝐷)))
1711, 9, 16syl2anc 692 . . . . . . . 8 (𝜑 → ((𝐴𝐷)𝐺(𝐵𝐷)) = -((𝐵𝐷)𝐺(𝐴𝐷)))
184simprd 479 . . . . . . . 8 (𝜑 → ((𝐴𝐷)𝐺(𝐵𝐷)) = 0)
1917, 18eqtr3d 2657 . . . . . . 7 (𝜑 → -((𝐵𝐷)𝐺(𝐴𝐷)) = 0)
2019negeqd 10235 . . . . . 6 (𝜑 → --((𝐵𝐷)𝐺(𝐴𝐷)) = -0)
219, 11jca 554 . . . . . . . 8 (𝜑 → ((𝐵𝐷) ∈ ℂ ∧ (𝐴𝐷) ∈ ℂ))
2212, 21sigarimcd 40385 . . . . . . 7 (𝜑 → ((𝐵𝐷)𝐺(𝐴𝐷)) ∈ ℂ)
2322negnegd 10343 . . . . . 6 (𝜑 → --((𝐵𝐷)𝐺(𝐴𝐷)) = ((𝐵𝐷)𝐺(𝐴𝐷)))
24 neg0 10287 . . . . . . 7 -0 = 0
2524a1i 11 . . . . . 6 (𝜑 → -0 = 0)
2620, 23, 253eqtr3d 2663 . . . . 5 (𝜑 → ((𝐵𝐷)𝐺(𝐴𝐷)) = 0)
2726oveq2d 6631 . . . 4 (𝜑 → (((𝐵𝐷)𝐺(𝐴𝐶)) − ((𝐵𝐷)𝐺(𝐴𝐷))) = (((𝐵𝐷)𝐺(𝐴𝐶)) − 0))
289, 10jca 554 . . . . . 6 (𝜑 → ((𝐵𝐷) ∈ ℂ ∧ (𝐴𝐶) ∈ ℂ))
2912, 28sigarimcd 40385 . . . . 5 (𝜑 → ((𝐵𝐷)𝐺(𝐴𝐶)) ∈ ℂ)
3029subid1d 10341 . . . 4 (𝜑 → (((𝐵𝐷)𝐺(𝐴𝐶)) − 0) = ((𝐵𝐷)𝐺(𝐴𝐶)))
3115, 27, 303eqtrd 2659 . . 3 (𝜑 → ((𝐵𝐷)𝐺(𝐷𝐶)) = ((𝐵𝐷)𝐺(𝐴𝐶)))
328, 5, 3nnncan2d 10387 . . . 4 (𝜑 → ((𝐵𝐶) − (𝐷𝐶)) = (𝐵𝐷))
3332oveq1d 6630 . . 3 (𝜑 → (((𝐵𝐶) − (𝐷𝐶))𝐺(𝐴𝐶)) = ((𝐵𝐷)𝐺(𝐴𝐶)))
348, 3subcld 10352 . . . 4 (𝜑 → (𝐵𝐶) ∈ ℂ)
355, 3subcld 10352 . . . 4 (𝜑 → (𝐷𝐶) ∈ ℂ)
3612sigarmf 40377 . . . 4 (((𝐵𝐶) ∈ ℂ ∧ (𝐴𝐶) ∈ ℂ ∧ (𝐷𝐶) ∈ ℂ) → (((𝐵𝐶) − (𝐷𝐶))𝐺(𝐴𝐶)) = (((𝐵𝐶)𝐺(𝐴𝐶)) − ((𝐷𝐶)𝐺(𝐴𝐶))))
3734, 10, 35, 36syl3anc 1323 . . 3 (𝜑 → (((𝐵𝐶) − (𝐷𝐶))𝐺(𝐴𝐶)) = (((𝐵𝐶)𝐺(𝐴𝐶)) − ((𝐷𝐶)𝐺(𝐴𝐶))))
3831, 33, 373eqtr2rd 2662 . 2 (𝜑 → (((𝐵𝐶)𝐺(𝐴𝐶)) − ((𝐷𝐶)𝐺(𝐴𝐶))) = ((𝐵𝐷)𝐺(𝐷𝐶)))
393, 5subcld 10352 . . . 4 (𝜑 → (𝐶𝐷) ∈ ℂ)
40 1red 10015 . . . . 5 (𝜑 → 1 ∈ ℝ)
4140renegcld 10417 . . . 4 (𝜑 → -1 ∈ ℝ)
4212sigarls 40380 . . . 4 (((𝐵𝐷) ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ ∧ -1 ∈ ℝ) → ((𝐵𝐷)𝐺((𝐶𝐷) · -1)) = (((𝐵𝐷)𝐺(𝐶𝐷)) · -1))
439, 39, 41, 42syl3anc 1323 . . 3 (𝜑 → ((𝐵𝐷)𝐺((𝐶𝐷) · -1)) = (((𝐵𝐷)𝐺(𝐶𝐷)) · -1))
4439mulm1d 10442 . . . . 5 (𝜑 → (-1 · (𝐶𝐷)) = -(𝐶𝐷))
45 1cnd 10016 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
4645negcld 10339 . . . . . 6 (𝜑 → -1 ∈ ℂ)
4746, 39mulcomd 10021 . . . . 5 (𝜑 → (-1 · (𝐶𝐷)) = ((𝐶𝐷) · -1))
483, 5negsubdi2d 10368 . . . . 5 (𝜑 → -(𝐶𝐷) = (𝐷𝐶))
4944, 47, 483eqtr3d 2663 . . . 4 (𝜑 → ((𝐶𝐷) · -1) = (𝐷𝐶))
5049oveq2d 6631 . . 3 (𝜑 → ((𝐵𝐷)𝐺((𝐶𝐷) · -1)) = ((𝐵𝐷)𝐺(𝐷𝐶)))
519, 39jca 554 . . . . . 6 (𝜑 → ((𝐵𝐷) ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ))
5212, 51sigarimcd 40385 . . . . 5 (𝜑 → ((𝐵𝐷)𝐺(𝐶𝐷)) ∈ ℂ)
5352mulm1d 10442 . . . 4 (𝜑 → (-1 · ((𝐵𝐷)𝐺(𝐶𝐷))) = -((𝐵𝐷)𝐺(𝐶𝐷)))
5452, 46mulcomd 10021 . . . 4 (𝜑 → (((𝐵𝐷)𝐺(𝐶𝐷)) · -1) = (-1 · ((𝐵𝐷)𝐺(𝐶𝐷))))
5512sigarac 40375 . . . . 5 (((𝐶𝐷) ∈ ℂ ∧ (𝐵𝐷) ∈ ℂ) → ((𝐶𝐷)𝐺(𝐵𝐷)) = -((𝐵𝐷)𝐺(𝐶𝐷)))
5639, 9, 55syl2anc 692 . . . 4 (𝜑 → ((𝐶𝐷)𝐺(𝐵𝐷)) = -((𝐵𝐷)𝐺(𝐶𝐷)))
5753, 54, 563eqtr4d 2665 . . 3 (𝜑 → (((𝐵𝐷)𝐺(𝐶𝐷)) · -1) = ((𝐶𝐷)𝐺(𝐵𝐷)))
5843, 50, 573eqtr3d 2663 . 2 (𝜑 → ((𝐵𝐷)𝐺(𝐷𝐶)) = ((𝐶𝐷)𝐺(𝐵𝐷)))
5912sigarperm 40383 . . 3 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐶𝐷)𝐺(𝐵𝐷)) = ((𝐵𝐶)𝐺(𝐷𝐶)))
603, 8, 5, 59syl3anc 1323 . 2 (𝜑 → ((𝐶𝐷)𝐺(𝐵𝐷)) = ((𝐵𝐶)𝐺(𝐷𝐶)))
6138, 58, 603eqtrd 2659 1 (𝜑 → (((𝐵𝐶)𝐺(𝐴𝐶)) − ((𝐷𝐶)𝐺(𝐴𝐶))) = ((𝐵𝐶)𝐺(𝐷𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  cfv 5857  (class class class)co 6615  cmpt2 6617  cc 9894  cr 9895  0cc0 9896  1c1 9897   · cmul 9901  cmin 10226  -cneg 10227  ccj 13786  cim 13788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-po 5005  df-so 5006  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-2 11039  df-cj 13789  df-re 13790  df-im 13791
This theorem is referenced by:  cevathlem2  40391
  Copyright terms: Public domain W3C validator