Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaradd Structured version   Visualization version   GIF version

Theorem sigaradd 43000
Description: Subtracting (double) area of 𝐴𝐷𝐶 from 𝐴𝐵𝐶 yields the (double) area of 𝐷𝐵𝐶. (Contributed by Saveliy Skresanov, 23-Sep-2017.)
Hypotheses
Ref Expression
sharhght.sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
sharhght.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
sharhght.b (𝜑 → (𝐷 ∈ ℂ ∧ ((𝐴𝐷)𝐺(𝐵𝐷)) = 0))
Assertion
Ref Expression
sigaradd (𝜑 → (((𝐵𝐶)𝐺(𝐴𝐶)) − ((𝐷𝐶)𝐺(𝐴𝐶))) = ((𝐵𝐶)𝐺(𝐷𝐶)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem sigaradd
StepHypRef Expression
1 sharhght.a . . . . . . . 8 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
21simp1d 1134 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
31simp3d 1136 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
4 sharhght.b . . . . . . . 8 (𝜑 → (𝐷 ∈ ℂ ∧ ((𝐴𝐷)𝐺(𝐵𝐷)) = 0))
54simpld 495 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
62, 3, 5nnncan1d 11019 . . . . . 6 (𝜑 → ((𝐴𝐶) − (𝐴𝐷)) = (𝐷𝐶))
76oveq2d 7161 . . . . 5 (𝜑 → ((𝐵𝐷)𝐺((𝐴𝐶) − (𝐴𝐷))) = ((𝐵𝐷)𝐺(𝐷𝐶)))
81simp2d 1135 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
98, 5subcld 10985 . . . . . 6 (𝜑 → (𝐵𝐷) ∈ ℂ)
102, 3subcld 10985 . . . . . 6 (𝜑 → (𝐴𝐶) ∈ ℂ)
112, 5subcld 10985 . . . . . 6 (𝜑 → (𝐴𝐷) ∈ ℂ)
12 sharhght.sigar . . . . . . 7 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
1312sigarms 42990 . . . . . 6 (((𝐵𝐷) ∈ ℂ ∧ (𝐴𝐶) ∈ ℂ ∧ (𝐴𝐷) ∈ ℂ) → ((𝐵𝐷)𝐺((𝐴𝐶) − (𝐴𝐷))) = (((𝐵𝐷)𝐺(𝐴𝐶)) − ((𝐵𝐷)𝐺(𝐴𝐷))))
149, 10, 11, 13syl3anc 1363 . . . . 5 (𝜑 → ((𝐵𝐷)𝐺((𝐴𝐶) − (𝐴𝐷))) = (((𝐵𝐷)𝐺(𝐴𝐶)) − ((𝐵𝐷)𝐺(𝐴𝐷))))
157, 14eqtr3d 2855 . . . 4 (𝜑 → ((𝐵𝐷)𝐺(𝐷𝐶)) = (((𝐵𝐷)𝐺(𝐴𝐶)) − ((𝐵𝐷)𝐺(𝐴𝐷))))
1612sigarac 42986 . . . . . . . . 9 (((𝐴𝐷) ∈ ℂ ∧ (𝐵𝐷) ∈ ℂ) → ((𝐴𝐷)𝐺(𝐵𝐷)) = -((𝐵𝐷)𝐺(𝐴𝐷)))
1711, 9, 16syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐴𝐷)𝐺(𝐵𝐷)) = -((𝐵𝐷)𝐺(𝐴𝐷)))
184simprd 496 . . . . . . . 8 (𝜑 → ((𝐴𝐷)𝐺(𝐵𝐷)) = 0)
1917, 18eqtr3d 2855 . . . . . . 7 (𝜑 → -((𝐵𝐷)𝐺(𝐴𝐷)) = 0)
2019negeqd 10868 . . . . . 6 (𝜑 → --((𝐵𝐷)𝐺(𝐴𝐷)) = -0)
219, 11jca 512 . . . . . . . 8 (𝜑 → ((𝐵𝐷) ∈ ℂ ∧ (𝐴𝐷) ∈ ℂ))
2212, 21sigarimcd 42996 . . . . . . 7 (𝜑 → ((𝐵𝐷)𝐺(𝐴𝐷)) ∈ ℂ)
2322negnegd 10976 . . . . . 6 (𝜑 → --((𝐵𝐷)𝐺(𝐴𝐷)) = ((𝐵𝐷)𝐺(𝐴𝐷)))
24 neg0 10920 . . . . . . 7 -0 = 0
2524a1i 11 . . . . . 6 (𝜑 → -0 = 0)
2620, 23, 253eqtr3d 2861 . . . . 5 (𝜑 → ((𝐵𝐷)𝐺(𝐴𝐷)) = 0)
2726oveq2d 7161 . . . 4 (𝜑 → (((𝐵𝐷)𝐺(𝐴𝐶)) − ((𝐵𝐷)𝐺(𝐴𝐷))) = (((𝐵𝐷)𝐺(𝐴𝐶)) − 0))
289, 10jca 512 . . . . . 6 (𝜑 → ((𝐵𝐷) ∈ ℂ ∧ (𝐴𝐶) ∈ ℂ))
2912, 28sigarimcd 42996 . . . . 5 (𝜑 → ((𝐵𝐷)𝐺(𝐴𝐶)) ∈ ℂ)
3029subid1d 10974 . . . 4 (𝜑 → (((𝐵𝐷)𝐺(𝐴𝐶)) − 0) = ((𝐵𝐷)𝐺(𝐴𝐶)))
3115, 27, 303eqtrd 2857 . . 3 (𝜑 → ((𝐵𝐷)𝐺(𝐷𝐶)) = ((𝐵𝐷)𝐺(𝐴𝐶)))
328, 5, 3nnncan2d 11020 . . . 4 (𝜑 → ((𝐵𝐶) − (𝐷𝐶)) = (𝐵𝐷))
3332oveq1d 7160 . . 3 (𝜑 → (((𝐵𝐶) − (𝐷𝐶))𝐺(𝐴𝐶)) = ((𝐵𝐷)𝐺(𝐴𝐶)))
348, 3subcld 10985 . . . 4 (𝜑 → (𝐵𝐶) ∈ ℂ)
355, 3subcld 10985 . . . 4 (𝜑 → (𝐷𝐶) ∈ ℂ)
3612sigarmf 42988 . . . 4 (((𝐵𝐶) ∈ ℂ ∧ (𝐴𝐶) ∈ ℂ ∧ (𝐷𝐶) ∈ ℂ) → (((𝐵𝐶) − (𝐷𝐶))𝐺(𝐴𝐶)) = (((𝐵𝐶)𝐺(𝐴𝐶)) − ((𝐷𝐶)𝐺(𝐴𝐶))))
3734, 10, 35, 36syl3anc 1363 . . 3 (𝜑 → (((𝐵𝐶) − (𝐷𝐶))𝐺(𝐴𝐶)) = (((𝐵𝐶)𝐺(𝐴𝐶)) − ((𝐷𝐶)𝐺(𝐴𝐶))))
3831, 33, 373eqtr2rd 2860 . 2 (𝜑 → (((𝐵𝐶)𝐺(𝐴𝐶)) − ((𝐷𝐶)𝐺(𝐴𝐶))) = ((𝐵𝐷)𝐺(𝐷𝐶)))
393, 5subcld 10985 . . . 4 (𝜑 → (𝐶𝐷) ∈ ℂ)
40 1red 10630 . . . . 5 (𝜑 → 1 ∈ ℝ)
4140renegcld 11055 . . . 4 (𝜑 → -1 ∈ ℝ)
4212sigarls 42991 . . . 4 (((𝐵𝐷) ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ ∧ -1 ∈ ℝ) → ((𝐵𝐷)𝐺((𝐶𝐷) · -1)) = (((𝐵𝐷)𝐺(𝐶𝐷)) · -1))
439, 39, 41, 42syl3anc 1363 . . 3 (𝜑 → ((𝐵𝐷)𝐺((𝐶𝐷) · -1)) = (((𝐵𝐷)𝐺(𝐶𝐷)) · -1))
4439mulm1d 11080 . . . . 5 (𝜑 → (-1 · (𝐶𝐷)) = -(𝐶𝐷))
45 1cnd 10624 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
4645negcld 10972 . . . . . 6 (𝜑 → -1 ∈ ℂ)
4746, 39mulcomd 10650 . . . . 5 (𝜑 → (-1 · (𝐶𝐷)) = ((𝐶𝐷) · -1))
483, 5negsubdi2d 11001 . . . . 5 (𝜑 → -(𝐶𝐷) = (𝐷𝐶))
4944, 47, 483eqtr3d 2861 . . . 4 (𝜑 → ((𝐶𝐷) · -1) = (𝐷𝐶))
5049oveq2d 7161 . . 3 (𝜑 → ((𝐵𝐷)𝐺((𝐶𝐷) · -1)) = ((𝐵𝐷)𝐺(𝐷𝐶)))
519, 39jca 512 . . . . . 6 (𝜑 → ((𝐵𝐷) ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ))
5212, 51sigarimcd 42996 . . . . 5 (𝜑 → ((𝐵𝐷)𝐺(𝐶𝐷)) ∈ ℂ)
5352mulm1d 11080 . . . 4 (𝜑 → (-1 · ((𝐵𝐷)𝐺(𝐶𝐷))) = -((𝐵𝐷)𝐺(𝐶𝐷)))
5452, 46mulcomd 10650 . . . 4 (𝜑 → (((𝐵𝐷)𝐺(𝐶𝐷)) · -1) = (-1 · ((𝐵𝐷)𝐺(𝐶𝐷))))
5512sigarac 42986 . . . . 5 (((𝐶𝐷) ∈ ℂ ∧ (𝐵𝐷) ∈ ℂ) → ((𝐶𝐷)𝐺(𝐵𝐷)) = -((𝐵𝐷)𝐺(𝐶𝐷)))
5639, 9, 55syl2anc 584 . . . 4 (𝜑 → ((𝐶𝐷)𝐺(𝐵𝐷)) = -((𝐵𝐷)𝐺(𝐶𝐷)))
5753, 54, 563eqtr4d 2863 . . 3 (𝜑 → (((𝐵𝐷)𝐺(𝐶𝐷)) · -1) = ((𝐶𝐷)𝐺(𝐵𝐷)))
5843, 50, 573eqtr3d 2861 . 2 (𝜑 → ((𝐵𝐷)𝐺(𝐷𝐶)) = ((𝐶𝐷)𝐺(𝐵𝐷)))
5912sigarperm 42994 . . 3 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐶𝐷)𝐺(𝐵𝐷)) = ((𝐵𝐶)𝐺(𝐷𝐶)))
603, 8, 5, 59syl3anc 1363 . 2 (𝜑 → ((𝐶𝐷)𝐺(𝐵𝐷)) = ((𝐵𝐶)𝐺(𝐷𝐶)))
6138, 58, 603eqtrd 2857 1 (𝜑 → (((𝐵𝐶)𝐺(𝐴𝐶)) − ((𝐷𝐶)𝐺(𝐴𝐶))) = ((𝐵𝐶)𝐺(𝐷𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  cfv 6348  (class class class)co 7145  cmpo 7147  cc 10523  cr 10524  0cc0 10525  1c1 10526   · cmul 10530  cmin 10858  -cneg 10859  ccj 14443  cim 14445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-2 11688  df-cj 14446  df-re 14447  df-im 14448
This theorem is referenced by:  cevathlem2  43002
  Copyright terms: Public domain W3C validator