Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigardiv Structured version   Visualization version   GIF version

Theorem sigardiv 43112
Description: If signed area between vectors 𝐵𝐴 and 𝐶𝐴 is zero, then those vectors lie on the same line. (Contributed by Saveliy Skresanov, 22-Sep-2017.)
Hypotheses
Ref Expression
sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
sigardiv.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
sigardiv.b (𝜑 → ¬ 𝐶 = 𝐴)
sigardiv.c (𝜑 → ((𝐵𝐴)𝐺(𝐶𝐴)) = 0)
Assertion
Ref Expression
sigardiv (𝜑 → ((𝐵𝐴) / (𝐶𝐴)) ∈ ℝ)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem sigardiv
StepHypRef Expression
1 sigardiv.a . . . . . . . 8 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
21simp2d 1139 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
31simp1d 1138 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
42, 3subcld 10991 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ ℂ)
51simp3d 1140 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
65, 3subcld 10991 . . . . . 6 (𝜑 → (𝐶𝐴) ∈ ℂ)
7 sigardiv.b . . . . . . . 8 (𝜑 → ¬ 𝐶 = 𝐴)
87neqned 3023 . . . . . . 7 (𝜑𝐶𝐴)
95, 3, 8subne0d 11000 . . . . . 6 (𝜑 → (𝐶𝐴) ≠ 0)
104, 6, 9cjdivd 14576 . . . . 5 (𝜑 → (∗‘((𝐵𝐴) / (𝐶𝐴))) = ((∗‘(𝐵𝐴)) / (∗‘(𝐶𝐴))))
114cjcld 14549 . . . . . . 7 (𝜑 → (∗‘(𝐵𝐴)) ∈ ℂ)
126cjcld 14549 . . . . . . 7 (𝜑 → (∗‘(𝐶𝐴)) ∈ ℂ)
136, 9cjne0d 14556 . . . . . . 7 (𝜑 → (∗‘(𝐶𝐴)) ≠ 0)
1411, 12, 6, 13, 9divcan5rd 11437 . . . . . 6 (𝜑 → (((∗‘(𝐵𝐴)) · (𝐶𝐴)) / ((∗‘(𝐶𝐴)) · (𝐶𝐴))) = ((∗‘(𝐵𝐴)) / (∗‘(𝐶𝐴))))
1511, 6mulcld 10655 . . . . . . . 8 (𝜑 → ((∗‘(𝐵𝐴)) · (𝐶𝐴)) ∈ ℂ)
16 sigar . . . . . . . . . . 11 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
1716sigarval 43101 . . . . . . . . . 10 (((𝐵𝐴) ∈ ℂ ∧ (𝐶𝐴) ∈ ℂ) → ((𝐵𝐴)𝐺(𝐶𝐴)) = (ℑ‘((∗‘(𝐵𝐴)) · (𝐶𝐴))))
184, 6, 17syl2anc 586 . . . . . . . . 9 (𝜑 → ((𝐵𝐴)𝐺(𝐶𝐴)) = (ℑ‘((∗‘(𝐵𝐴)) · (𝐶𝐴))))
19 sigardiv.c . . . . . . . . 9 (𝜑 → ((𝐵𝐴)𝐺(𝐶𝐴)) = 0)
2018, 19eqtr3d 2858 . . . . . . . 8 (𝜑 → (ℑ‘((∗‘(𝐵𝐴)) · (𝐶𝐴))) = 0)
2115, 20reim0bd 14553 . . . . . . 7 (𝜑 → ((∗‘(𝐵𝐴)) · (𝐶𝐴)) ∈ ℝ)
226, 12mulcomd 10656 . . . . . . . 8 (𝜑 → ((𝐶𝐴) · (∗‘(𝐶𝐴))) = ((∗‘(𝐶𝐴)) · (𝐶𝐴)))
236cjmulrcld 14559 . . . . . . . 8 (𝜑 → ((𝐶𝐴) · (∗‘(𝐶𝐴))) ∈ ℝ)
2422, 23eqeltrrd 2914 . . . . . . 7 (𝜑 → ((∗‘(𝐶𝐴)) · (𝐶𝐴)) ∈ ℝ)
2512, 6, 13, 9mulne0d 11286 . . . . . . 7 (𝜑 → ((∗‘(𝐶𝐴)) · (𝐶𝐴)) ≠ 0)
2621, 24, 25redivcld 11462 . . . . . 6 (𝜑 → (((∗‘(𝐵𝐴)) · (𝐶𝐴)) / ((∗‘(𝐶𝐴)) · (𝐶𝐴))) ∈ ℝ)
2714, 26eqeltrrd 2914 . . . . 5 (𝜑 → ((∗‘(𝐵𝐴)) / (∗‘(𝐶𝐴))) ∈ ℝ)
2810, 27eqeltrd 2913 . . . 4 (𝜑 → (∗‘((𝐵𝐴) / (𝐶𝐴))) ∈ ℝ)
2928cjred 14579 . . 3 (𝜑 → (∗‘(∗‘((𝐵𝐴) / (𝐶𝐴)))) = (∗‘((𝐵𝐴) / (𝐶𝐴))))
304, 6, 9divcld 11410 . . . 4 (𝜑 → ((𝐵𝐴) / (𝐶𝐴)) ∈ ℂ)
3130cjcjd 14552 . . 3 (𝜑 → (∗‘(∗‘((𝐵𝐴) / (𝐶𝐴)))) = ((𝐵𝐴) / (𝐶𝐴)))
3229, 31eqtr3d 2858 . 2 (𝜑 → (∗‘((𝐵𝐴) / (𝐶𝐴))) = ((𝐵𝐴) / (𝐶𝐴)))
3332, 28eqeltrrd 2914 1 (𝜑 → ((𝐵𝐴) / (𝐶𝐴)) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1083   = wceq 1533  wcel 2110  cfv 6349  (class class class)co 7150  cmpo 7152  cc 10529  cr 10530  0cc0 10531   · cmul 10536  cmin 10864   / cdiv 11291  ccj 14449  cim 14451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-2 11694  df-cj 14452  df-re 14453  df-im 14454
This theorem is referenced by:  sigarcol  43115  sharhght  43116
  Copyright terms: Public domain W3C validator