![]() |
Mathbox for Saveliy Skresanov |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigariz | Structured version Visualization version GIF version |
Description: If signed area is zero, the signed area with swapped arguments is also zero. Deduction version. (Contributed by Saveliy Skresanov, 23-Sep-2017.) |
Ref | Expression |
---|---|
sigarimcd.sigar | ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) |
sigarimcd.a | ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) |
sigariz.a | ⊢ (𝜑 → (𝐴𝐺𝐵) = 0) |
Ref | Expression |
---|---|
sigariz | ⊢ (𝜑 → (𝐵𝐺𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sigariz.a | . . . 4 ⊢ (𝜑 → (𝐴𝐺𝐵) = 0) | |
2 | sigarimcd.a | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) | |
3 | sigarimcd.sigar | . . . . . 6 ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) | |
4 | 3 | sigarac 41362 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = -(𝐵𝐺𝐴)) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴𝐺𝐵) = -(𝐵𝐺𝐴)) |
6 | 1, 5 | eqtr3d 2687 | . . 3 ⊢ (𝜑 → 0 = -(𝐵𝐺𝐴)) |
7 | 6 | negeqd 10313 | . 2 ⊢ (𝜑 → -0 = --(𝐵𝐺𝐴)) |
8 | neg0 10365 | . . 3 ⊢ -0 = 0 | |
9 | 8 | a1i 11 | . 2 ⊢ (𝜑 → -0 = 0) |
10 | 2 | ancomd 466 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ)) |
11 | 3, 10 | sigarimcd 41372 | . . 3 ⊢ (𝜑 → (𝐵𝐺𝐴) ∈ ℂ) |
12 | 11 | negnegd 10421 | . 2 ⊢ (𝜑 → --(𝐵𝐺𝐴) = (𝐵𝐺𝐴)) |
13 | 7, 9, 12 | 3eqtr3rd 2694 | 1 ⊢ (𝜑 → (𝐵𝐺𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ‘cfv 5926 (class class class)co 6690 ↦ cmpt2 6692 ℂcc 9972 0cc0 9974 · cmul 9979 -cneg 10305 ∗ccj 13880 ℑcim 13882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-po 5064 df-so 5065 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-2 11117 df-cj 13883 df-re 13884 df-im 13885 |
This theorem is referenced by: cevathlem2 41378 |
Copyright terms: Public domain | W3C validator |