![]() |
Mathbox for Saveliy Skresanov |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigarls | Structured version Visualization version GIF version |
Description: Signed area is linear by the second argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
Ref | Expression |
---|---|
sigar | ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) |
Ref | Expression |
---|---|
sigarls | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐴𝐺(𝐵 · 𝐶)) = ((𝐴𝐺𝐵) · 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1081 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ) | |
2 | 1 | cjcld 13980 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (∗‘𝐴) ∈ ℂ) |
3 | simp2 1082 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ) | |
4 | simpr 476 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ) | |
5 | 4 | recnd 10106 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ) |
6 | 5 | 3adant1 1099 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ) |
7 | 2, 3, 6 | mulassd 10101 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (((∗‘𝐴) · 𝐵) · 𝐶) = ((∗‘𝐴) · (𝐵 · 𝐶))) |
8 | 7 | fveq2d 6233 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (ℑ‘(((∗‘𝐴) · 𝐵) · 𝐶)) = (ℑ‘((∗‘𝐴) · (𝐵 · 𝐶)))) |
9 | simp3 1083 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ) | |
10 | 2, 3 | mulcld 10098 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → ((∗‘𝐴) · 𝐵) ∈ ℂ) |
11 | 9, 10 | immul2d 14012 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (ℑ‘(𝐶 · ((∗‘𝐴) · 𝐵))) = (𝐶 · (ℑ‘((∗‘𝐴) · 𝐵)))) |
12 | 10, 6 | mulcomd 10099 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (((∗‘𝐴) · 𝐵) · 𝐶) = (𝐶 · ((∗‘𝐴) · 𝐵))) |
13 | 12 | fveq2d 6233 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (ℑ‘(((∗‘𝐴) · 𝐵) · 𝐶)) = (ℑ‘(𝐶 · ((∗‘𝐴) · 𝐵)))) |
14 | imcl 13895 | . . . . . . 7 ⊢ (((∗‘𝐴) · 𝐵) ∈ ℂ → (ℑ‘((∗‘𝐴) · 𝐵)) ∈ ℝ) | |
15 | 14 | recnd 10106 | . . . . . 6 ⊢ (((∗‘𝐴) · 𝐵) ∈ ℂ → (ℑ‘((∗‘𝐴) · 𝐵)) ∈ ℂ) |
16 | 10, 15 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (ℑ‘((∗‘𝐴) · 𝐵)) ∈ ℂ) |
17 | 16, 6 | mulcomd 10099 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → ((ℑ‘((∗‘𝐴) · 𝐵)) · 𝐶) = (𝐶 · (ℑ‘((∗‘𝐴) · 𝐵)))) |
18 | 11, 13, 17 | 3eqtr4d 2695 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (ℑ‘(((∗‘𝐴) · 𝐵) · 𝐶)) = ((ℑ‘((∗‘𝐴) · 𝐵)) · 𝐶)) |
19 | 8, 18 | eqtr3d 2687 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (ℑ‘((∗‘𝐴) · (𝐵 · 𝐶))) = ((ℑ‘((∗‘𝐴) · 𝐵)) · 𝐶)) |
20 | simpl 472 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ) | |
21 | 20, 5 | mulcld 10098 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) ∈ ℂ) |
22 | 21 | 3adant1 1099 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) ∈ ℂ) |
23 | sigar | . . . 4 ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) | |
24 | 23 | sigarval 41360 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 · 𝐶) ∈ ℂ) → (𝐴𝐺(𝐵 · 𝐶)) = (ℑ‘((∗‘𝐴) · (𝐵 · 𝐶)))) |
25 | 1, 22, 24 | syl2anc 694 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐴𝐺(𝐵 · 𝐶)) = (ℑ‘((∗‘𝐴) · (𝐵 · 𝐶)))) |
26 | 23 | sigarval 41360 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵))) |
27 | 26 | 3adant3 1101 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵))) |
28 | 27 | oveq1d 6705 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐺𝐵) · 𝐶) = ((ℑ‘((∗‘𝐴) · 𝐵)) · 𝐶)) |
29 | 19, 25, 28 | 3eqtr4d 2695 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐴𝐺(𝐵 · 𝐶)) = ((𝐴𝐺𝐵) · 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ‘cfv 5926 (class class class)co 6690 ↦ cmpt2 6692 ℂcc 9972 ℝcr 9973 · cmul 9979 ∗ccj 13880 ℑcim 13882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-po 5064 df-so 5065 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-2 11117 df-cj 13883 df-re 13884 df-im 13885 |
This theorem is referenced by: sigarcol 41374 sharhght 41375 sigaradd 41376 |
Copyright terms: Public domain | W3C validator |