Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsply0 Structured version   Visualization version   GIF version

Theorem signsply0 29757
Description: Lemma for the rule of signs, based on Bolzano's intermediate value theorem for polynomials : If the lowest and highest coefficient 𝐴 and 𝐵 are of opposite signs, the polynomial admits a positive root. (Contributed by Thierry Arnoux, 19-Sep-2018.)
Hypotheses
Ref Expression
signsply0.d 𝐷 = (deg‘𝐹)
signsply0.c 𝐶 = (coeff‘𝐹)
signsply0.b 𝐵 = (𝐶𝐷)
signsply0.a 𝐴 = (𝐶‘0)
signsply0.1 (𝜑𝐹 ∈ (Poly‘ℝ))
signsply0.2 (𝜑𝐹 ≠ 0𝑝)
signsply0.3 (𝜑 → (𝐴 · 𝐵) < 0)
Assertion
Ref Expression
signsply0 (𝜑 → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
Distinct variable groups:   𝑧,𝐵   𝑧,𝐹   𝜑,𝑧
Allowed substitution hints:   𝐴(𝑧)   𝐶(𝑧)   𝐷(𝑧)

Proof of Theorem signsply0
Dummy variables 𝑒 𝑑 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 787 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)) → 𝑑 ∈ ℝ+)
2 simpr 475 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)) → ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵))
3 rpxr 11669 . . . . . . . 8 (𝑑 ∈ ℝ+𝑑 ∈ ℝ*)
4 xrleid 11815 . . . . . . . 8 (𝑑 ∈ ℝ*𝑑𝑑)
53, 4syl 17 . . . . . . 7 (𝑑 ∈ ℝ+𝑑𝑑)
65ad2antlr 758 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)) → 𝑑𝑑)
7 id 22 . . . . . . 7 (𝑑 ∈ ℝ+𝑑 ∈ ℝ+)
8 simpr 475 . . . . . . . . 9 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → 𝑓 = 𝑑)
98breq2d 4586 . . . . . . . 8 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → (𝑑𝑓𝑑𝑑))
108fveq2d 6089 . . . . . . . . . . . 12 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → (𝐹𝑓) = (𝐹𝑑))
118oveq1d 6539 . . . . . . . . . . . 12 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → (𝑓𝐷) = (𝑑𝐷))
1210, 11oveq12d 6542 . . . . . . . . . . 11 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → ((𝐹𝑓) / (𝑓𝐷)) = ((𝐹𝑑) / (𝑑𝐷)))
1312oveq1d 6539 . . . . . . . . . 10 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → (((𝐹𝑓) / (𝑓𝐷)) − 𝐵) = (((𝐹𝑑) / (𝑑𝐷)) − 𝐵))
1413fveq2d 6089 . . . . . . . . 9 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) = (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)))
1514breq1d 4584 . . . . . . . 8 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → ((abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵 ↔ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵))
169, 15imbi12d 332 . . . . . . 7 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → ((𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵) ↔ (𝑑𝑑 → (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵)))
177, 16rspcdv 3281 . . . . . 6 (𝑑 ∈ ℝ+ → (∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵) → (𝑑𝑑 → (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵)))
181, 2, 6, 17syl3c 63 . . . . 5 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)) → (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵)
19 signsply0.1 . . . . . . . . . . . 12 (𝜑𝐹 ∈ (Poly‘ℝ))
2019ad2antrr 757 . . . . . . . . . . 11 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐹 ∈ (Poly‘ℝ))
21 simpr 475 . . . . . . . . . . . 12 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ+)
2221rpred 11701 . . . . . . . . . . 11 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ)
2320, 22plyrecld 29755 . . . . . . . . . 10 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝐹𝑑) ∈ ℝ)
24 signsply0.d . . . . . . . . . . . . 13 𝐷 = (deg‘𝐹)
25 dgrcl 23707 . . . . . . . . . . . . . 14 (𝐹 ∈ (Poly‘ℝ) → (deg‘𝐹) ∈ ℕ0)
2619, 25syl 17 . . . . . . . . . . . . 13 (𝜑 → (deg‘𝐹) ∈ ℕ0)
2724, 26syl5eqel 2688 . . . . . . . . . . . 12 (𝜑𝐷 ∈ ℕ0)
2827ad2antrr 757 . . . . . . . . . . 11 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐷 ∈ ℕ0)
2922, 28reexpcld 12839 . . . . . . . . . 10 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑𝐷) ∈ ℝ)
3021rpcnd 11703 . . . . . . . . . . 11 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℂ)
3121rpne0d 11706 . . . . . . . . . . 11 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ≠ 0)
3227nn0zd 11309 . . . . . . . . . . . 12 (𝜑𝐷 ∈ ℤ)
3332ad2antrr 757 . . . . . . . . . . 11 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐷 ∈ ℤ)
3430, 31, 33expne0d 12828 . . . . . . . . . 10 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑𝐷) ≠ 0)
3523, 29, 34redivcld 10699 . . . . . . . . 9 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝐹𝑑) / (𝑑𝐷)) ∈ ℝ)
36 signsply0.b . . . . . . . . . . . 12 𝐵 = (𝐶𝐷)
37 0re 9893 . . . . . . . . . . . . . 14 0 ∈ ℝ
38 signsply0.c . . . . . . . . . . . . . . 15 𝐶 = (coeff‘𝐹)
3938coef2 23705 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Poly‘ℝ) ∧ 0 ∈ ℝ) → 𝐶:ℕ0⟶ℝ)
4037, 39mpan2 702 . . . . . . . . . . . . 13 (𝐹 ∈ (Poly‘ℝ) → 𝐶:ℕ0⟶ℝ)
4140ffvelrnda 6249 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐷 ∈ ℕ0) → (𝐶𝐷) ∈ ℝ)
4236, 41syl5eqel 2688 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐷 ∈ ℕ0) → 𝐵 ∈ ℝ)
4319, 27, 42syl2anc 690 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
4443ad2antrr 757 . . . . . . . . 9 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐵 ∈ ℝ)
4544renegcld 10305 . . . . . . . . 9 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → -𝐵 ∈ ℝ)
4635, 44, 45absdifltd 13963 . . . . . . . 8 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵 ↔ ((𝐵 − -𝐵) < ((𝐹𝑑) / (𝑑𝐷)) ∧ ((𝐹𝑑) / (𝑑𝐷)) < (𝐵 + -𝐵))))
4746simplbda 651 . . . . . . 7 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵) → ((𝐹𝑑) / (𝑑𝐷)) < (𝐵 + -𝐵))
4843recnd 9921 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
4948ad2antrr 757 . . . . . . . . 9 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐵 ∈ ℂ)
5049negidd 10230 . . . . . . . 8 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝐵 + -𝐵) = 0)
5150adantr 479 . . . . . . 7 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵) → (𝐵 + -𝐵) = 0)
5247, 51breqtrd 4600 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵) → ((𝐹𝑑) / (𝑑𝐷)) < 0)
5321, 33rpexpcld 12846 . . . . . . . . . 10 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑𝐷) ∈ ℝ+)
5423, 53ge0divd 11739 . . . . . . . . 9 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (0 ≤ (𝐹𝑑) ↔ 0 ≤ ((𝐹𝑑) / (𝑑𝐷))))
5554notbid 306 . . . . . . . 8 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (¬ 0 ≤ (𝐹𝑑) ↔ ¬ 0 ≤ ((𝐹𝑑) / (𝑑𝐷))))
56 0red 9894 . . . . . . . . 9 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 0 ∈ ℝ)
5723, 56ltnled 10032 . . . . . . . 8 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝐹𝑑) < 0 ↔ ¬ 0 ≤ (𝐹𝑑)))
5835, 56ltnled 10032 . . . . . . . 8 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (((𝐹𝑑) / (𝑑𝐷)) < 0 ↔ ¬ 0 ≤ ((𝐹𝑑) / (𝑑𝐷))))
5955, 57, 583bitr4d 298 . . . . . . 7 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝐹𝑑) < 0 ↔ ((𝐹𝑑) / (𝑑𝐷)) < 0))
6059adantr 479 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵) → ((𝐹𝑑) < 0 ↔ ((𝐹𝑑) / (𝑑𝐷)) < 0))
6152, 60mpbird 245 . . . . 5 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵) → (𝐹𝑑) < 0)
6218, 61syldan 485 . . . 4 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)) → (𝐹𝑑) < 0)
63 0red 9894 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 0 ∈ ℝ)
64 simplr 787 . . . . . . 7 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 𝑑 ∈ ℝ+)
6564rpred 11701 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 𝑑 ∈ ℝ)
6664rpgt0d 11704 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 0 < 𝑑)
67 iccssre 12079 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (0[,]𝑑) ⊆ ℝ)
6837, 65, 67sylancr 693 . . . . . . 7 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → (0[,]𝑑) ⊆ ℝ)
69 ax-resscn 9846 . . . . . . 7 ℝ ⊆ ℂ
7068, 69syl6ss 3576 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → (0[,]𝑑) ⊆ ℂ)
71 plycn 23735 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → 𝐹 ∈ (ℂ–cn→ℂ))
7219, 71syl 17 . . . . . . 7 (𝜑𝐹 ∈ (ℂ–cn→ℂ))
7372ad3antrrr 761 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 𝐹 ∈ (ℂ–cn→ℂ))
7419ad4antr 763 . . . . . . 7 (((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) ∧ 𝑥 ∈ (0[,]𝑑)) → 𝐹 ∈ (Poly‘ℝ))
7568sselda 3564 . . . . . . 7 (((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) ∧ 𝑥 ∈ (0[,]𝑑)) → 𝑥 ∈ ℝ)
7674, 75plyrecld 29755 . . . . . 6 (((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) ∧ 𝑥 ∈ (0[,]𝑑)) → (𝐹𝑥) ∈ ℝ)
77 simpr 475 . . . . . . 7 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → (𝐹𝑑) < 0)
78 simplll 793 . . . . . . . . 9 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 𝜑)
7978, 43syl 17 . . . . . . . . . 10 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 𝐵 ∈ ℝ)
80 simpr 475 . . . . . . . . . . 11 ((𝜑 ∧ -𝐵 ∈ ℝ+) → -𝐵 ∈ ℝ+)
8180ad2antrr 757 . . . . . . . . . 10 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → -𝐵 ∈ ℝ+)
82 negelrp 11693 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (-𝐵 ∈ ℝ+𝐵 < 0))
8382biimpa 499 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ -𝐵 ∈ ℝ+) → 𝐵 < 0)
8479, 81, 83syl2anc 690 . . . . . . . . 9 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 𝐵 < 0)
85 signsply0.a . . . . . . . . . . . 12 𝐴 = (𝐶‘0)
8619, 37, 39sylancl 692 . . . . . . . . . . . . 13 (𝜑𝐶:ℕ0⟶ℝ)
87 0nn0 11151 . . . . . . . . . . . . . 14 0 ∈ ℕ0
8887a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℕ0)
8986, 88ffvelrnd 6250 . . . . . . . . . . . 12 (𝜑 → (𝐶‘0) ∈ ℝ)
9085, 89syl5eqel 2688 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
91 signsply0.3 . . . . . . . . . . 11 (𝜑 → (𝐴 · 𝐵) < 0)
9290, 43, 91mul2lt0rlt0 11761 . . . . . . . . . 10 ((𝜑𝐵 < 0) → 0 < 𝐴)
9392, 85syl6breq 4615 . . . . . . . . 9 ((𝜑𝐵 < 0) → 0 < (𝐶‘0))
9478, 84, 93syl2anc 690 . . . . . . . 8 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 0 < (𝐶‘0))
9538coefv0 23722 . . . . . . . . . 10 (𝐹 ∈ (Poly‘ℝ) → (𝐹‘0) = (𝐶‘0))
9619, 95syl 17 . . . . . . . . 9 (𝜑 → (𝐹‘0) = (𝐶‘0))
9796ad3antrrr 761 . . . . . . . 8 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → (𝐹‘0) = (𝐶‘0))
9894, 97breqtrrd 4602 . . . . . . 7 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 0 < (𝐹‘0))
9977, 98jca 552 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → ((𝐹𝑑) < 0 ∧ 0 < (𝐹‘0)))
10063, 65, 63, 66, 70, 73, 76, 99ivth2 22945 . . . . 5 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → ∃𝑧 ∈ (0(,)𝑑)(𝐹𝑧) = 0)
101 0le0 10954 . . . . . . . 8 0 ≤ 0
102 pnfge 11798 . . . . . . . . 9 (𝑑 ∈ ℝ*𝑑 ≤ +∞)
1033, 102syl 17 . . . . . . . 8 (𝑑 ∈ ℝ+𝑑 ≤ +∞)
104 0xr 9939 . . . . . . . . 9 0 ∈ ℝ*
105 pnfxr 11778 . . . . . . . . 9 +∞ ∈ ℝ*
106 ioossioo 12089 . . . . . . . . 9 (((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0 ≤ 0 ∧ 𝑑 ≤ +∞)) → (0(,)𝑑) ⊆ (0(,)+∞))
107104, 105, 106mpanl12 713 . . . . . . . 8 ((0 ≤ 0 ∧ 𝑑 ≤ +∞) → (0(,)𝑑) ⊆ (0(,)+∞))
108101, 103, 107sylancr 693 . . . . . . 7 (𝑑 ∈ ℝ+ → (0(,)𝑑) ⊆ (0(,)+∞))
109 ioorp 12075 . . . . . . 7 (0(,)+∞) = ℝ+
110108, 109syl6sseq 3610 . . . . . 6 (𝑑 ∈ ℝ+ → (0(,)𝑑) ⊆ ℝ+)
111 ssrexv 3626 . . . . . 6 ((0(,)𝑑) ⊆ ℝ+ → (∃𝑧 ∈ (0(,)𝑑)(𝐹𝑧) = 0 → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0))
11264, 110, 1113syl 18 . . . . 5 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → (∃𝑧 ∈ (0(,)𝑑)(𝐹𝑧) = 0 → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0))
113100, 112mpd 15 . . . 4 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
11462, 113syldan 485 . . 3 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)) → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
115 plyf 23672 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘ℝ) → 𝐹:ℂ⟶ℂ)
11619, 115syl 17 . . . . . . . . . 10 (𝜑𝐹:ℂ⟶ℂ)
117 ffn 5941 . . . . . . . . . 10 (𝐹:ℂ⟶ℂ → 𝐹 Fn ℂ)
118116, 117syl 17 . . . . . . . . 9 (𝜑𝐹 Fn ℂ)
119 ovex 6552 . . . . . . . . . . 11 (𝑥𝐷) ∈ V
120119rgenw 2904 . . . . . . . . . 10 𝑥 ∈ ℝ+ (𝑥𝐷) ∈ V
121 eqid 2606 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ ↦ (𝑥𝐷)) = (𝑥 ∈ ℝ+ ↦ (𝑥𝐷))
122121fnmpt 5916 . . . . . . . . . 10 (∀𝑥 ∈ ℝ+ (𝑥𝐷) ∈ V → (𝑥 ∈ ℝ+ ↦ (𝑥𝐷)) Fn ℝ+)
123120, 122mp1i 13 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑥𝐷)) Fn ℝ+)
124 cnex 9870 . . . . . . . . . 10 ℂ ∈ V
125124a1i 11 . . . . . . . . 9 (𝜑 → ℂ ∈ V)
126 rpssre 11672 . . . . . . . . . . . 12 + ⊆ ℝ
127126, 69sstri 3573 . . . . . . . . . . 11 + ⊆ ℂ
128124, 127ssexi 4723 . . . . . . . . . 10 + ∈ V
129128a1i 11 . . . . . . . . 9 (𝜑 → ℝ+ ∈ V)
130 sseqin2 3775 . . . . . . . . . 10 (ℝ+ ⊆ ℂ ↔ (ℂ ∩ ℝ+) = ℝ+)
131127, 130mpbi 218 . . . . . . . . 9 (ℂ ∩ ℝ+) = ℝ+
132 eqidd 2607 . . . . . . . . 9 ((𝜑𝑓 ∈ ℂ) → (𝐹𝑓) = (𝐹𝑓))
133 eqidd 2607 . . . . . . . . . 10 ((𝜑𝑓 ∈ ℝ+) → (𝑥 ∈ ℝ+ ↦ (𝑥𝐷)) = (𝑥 ∈ ℝ+ ↦ (𝑥𝐷)))
134 simpr 475 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ℝ+) ∧ 𝑥 = 𝑓) → 𝑥 = 𝑓)
135134oveq1d 6539 . . . . . . . . . 10 (((𝜑𝑓 ∈ ℝ+) ∧ 𝑥 = 𝑓) → (𝑥𝐷) = (𝑓𝐷))
136 simpr 475 . . . . . . . . . 10 ((𝜑𝑓 ∈ ℝ+) → 𝑓 ∈ ℝ+)
137 ovex 6552 . . . . . . . . . . 11 (𝑓𝐷) ∈ V
138137a1i 11 . . . . . . . . . 10 ((𝜑𝑓 ∈ ℝ+) → (𝑓𝐷) ∈ V)
139133, 135, 136, 138fvmptd 6179 . . . . . . . . 9 ((𝜑𝑓 ∈ ℝ+) → ((𝑥 ∈ ℝ+ ↦ (𝑥𝐷))‘𝑓) = (𝑓𝐷))
140118, 123, 125, 129, 131, 132, 139offval 6776 . . . . . . . 8 (𝜑 → (𝐹𝑓 / (𝑥 ∈ ℝ+ ↦ (𝑥𝐷))) = (𝑓 ∈ ℝ+ ↦ ((𝐹𝑓) / (𝑓𝐷))))
141 oveq1 6531 . . . . . . . . . . 11 (𝑥 = 𝑓 → (𝑥𝐷) = (𝑓𝐷))
142141cbvmptv 4669 . . . . . . . . . 10 (𝑥 ∈ ℝ+ ↦ (𝑥𝐷)) = (𝑓 ∈ ℝ+ ↦ (𝑓𝐷))
14324, 38, 36, 142signsplypnf 29756 . . . . . . . . 9 (𝐹 ∈ (Poly‘ℝ) → (𝐹𝑓 / (𝑥 ∈ ℝ+ ↦ (𝑥𝐷))) ⇝𝑟 𝐵)
14419, 143syl 17 . . . . . . . 8 (𝜑 → (𝐹𝑓 / (𝑥 ∈ ℝ+ ↦ (𝑥𝐷))) ⇝𝑟 𝐵)
145140, 144eqbrtrrd 4598 . . . . . . 7 (𝜑 → (𝑓 ∈ ℝ+ ↦ ((𝐹𝑓) / (𝑓𝐷))) ⇝𝑟 𝐵)
146116adantr 479 . . . . . . . . . . 11 ((𝜑𝑓 ∈ ℝ+) → 𝐹:ℂ⟶ℂ)
147136rpcnd 11703 . . . . . . . . . . 11 ((𝜑𝑓 ∈ ℝ+) → 𝑓 ∈ ℂ)
148146, 147ffvelrnd 6250 . . . . . . . . . 10 ((𝜑𝑓 ∈ ℝ+) → (𝐹𝑓) ∈ ℂ)
14927adantr 479 . . . . . . . . . . 11 ((𝜑𝑓 ∈ ℝ+) → 𝐷 ∈ ℕ0)
150147, 149expcld 12822 . . . . . . . . . 10 ((𝜑𝑓 ∈ ℝ+) → (𝑓𝐷) ∈ ℂ)
151136rpne0d 11706 . . . . . . . . . . 11 ((𝜑𝑓 ∈ ℝ+) → 𝑓 ≠ 0)
15232adantr 479 . . . . . . . . . . 11 ((𝜑𝑓 ∈ ℝ+) → 𝐷 ∈ ℤ)
153147, 151, 152expne0d 12828 . . . . . . . . . 10 ((𝜑𝑓 ∈ ℝ+) → (𝑓𝐷) ≠ 0)
154148, 150, 153divcld 10647 . . . . . . . . 9 ((𝜑𝑓 ∈ ℝ+) → ((𝐹𝑓) / (𝑓𝐷)) ∈ ℂ)
155154ralrimiva 2945 . . . . . . . 8 (𝜑 → ∀𝑓 ∈ ℝ+ ((𝐹𝑓) / (𝑓𝐷)) ∈ ℂ)
156126a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ⊆ ℝ)
157 1red 9908 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
158155, 156, 48, 157rlim3 14020 . . . . . . 7 (𝜑 → ((𝑓 ∈ ℝ+ ↦ ((𝐹𝑓) / (𝑓𝐷))) ⇝𝑟 𝐵 ↔ ∀𝑒 ∈ ℝ+𝑑 ∈ (1[,)+∞)∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒)))
159145, 158mpbid 220 . . . . . 6 (𝜑 → ∀𝑒 ∈ ℝ+𝑑 ∈ (1[,)+∞)∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒))
160 0lt1 10396 . . . . . . . . . 10 0 < 1
161 pnfge 11798 . . . . . . . . . . 11 (+∞ ∈ ℝ* → +∞ ≤ +∞)
162105, 161ax-mp 5 . . . . . . . . . 10 +∞ ≤ +∞
163 icossioo 12088 . . . . . . . . . 10 (((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0 < 1 ∧ +∞ ≤ +∞)) → (1[,)+∞) ⊆ (0(,)+∞))
164104, 105, 160, 162, 163mp4an 704 . . . . . . . . 9 (1[,)+∞) ⊆ (0(,)+∞)
165164, 109sseqtri 3596 . . . . . . . 8 (1[,)+∞) ⊆ ℝ+
166 ssrexv 3626 . . . . . . . 8 ((1[,)+∞) ⊆ ℝ+ → (∃𝑑 ∈ (1[,)+∞)∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒)))
167165, 166ax-mp 5 . . . . . . 7 (∃𝑑 ∈ (1[,)+∞)∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒))
168167ralimi 2932 . . . . . 6 (∀𝑒 ∈ ℝ+𝑑 ∈ (1[,)+∞)∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒))
169159, 168syl 17 . . . . 5 (𝜑 → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒))
170169adantr 479 . . . 4 ((𝜑 ∧ -𝐵 ∈ ℝ+) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒))
171 simpr 475 . . . . . . . 8 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑒 = -𝐵) → 𝑒 = -𝐵)
172171breq2d 4586 . . . . . . 7 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑒 = -𝐵) → ((abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒 ↔ (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵))
173172imbi2d 328 . . . . . 6 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑒 = -𝐵) → ((𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) ↔ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)))
174173rexralbidv 3036 . . . . 5 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑒 = -𝐵) → (∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) ↔ ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)))
17580, 174rspcdv 3281 . . . 4 ((𝜑 ∧ -𝐵 ∈ ℝ+) → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)))
176170, 175mpd 15 . . 3 ((𝜑 ∧ -𝐵 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵))
177114, 176r19.29a 3056 . 2 ((𝜑 ∧ -𝐵 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
178 simplr 787 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)) → 𝑑 ∈ ℝ+)
179 simpr 475 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)) → ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵))
1805ad2antlr 758 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)) → 𝑑𝑑)
18114breq1d 4584 . . . . . . . 8 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → ((abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵 ↔ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵))
1829, 181imbi12d 332 . . . . . . 7 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → ((𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵) ↔ (𝑑𝑑 → (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵)))
1837, 182rspcdv 3281 . . . . . 6 (𝑑 ∈ ℝ+ → (∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵) → (𝑑𝑑 → (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵)))
184178, 179, 180, 183syl3c 63 . . . . 5 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)) → (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵)
18548ad2antrr 757 . . . . . . . . 9 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐵 ∈ ℂ)
186185subidd 10228 . . . . . . . 8 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝐵𝐵) = 0)
187186adantr 479 . . . . . . 7 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵) → (𝐵𝐵) = 0)
18819ad2antrr 757 . . . . . . . . . . 11 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐹 ∈ (Poly‘ℝ))
189126a1i 11 . . . . . . . . . . . 12 ((𝜑𝐵 ∈ ℝ+) → ℝ+ ⊆ ℝ)
190189sselda 3564 . . . . . . . . . . 11 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ)
191188, 190plyrecld 29755 . . . . . . . . . 10 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝐹𝑑) ∈ ℝ)
19227ad2antrr 757 . . . . . . . . . . 11 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐷 ∈ ℕ0)
193190, 192reexpcld 12839 . . . . . . . . . 10 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑𝐷) ∈ ℝ)
194190recnd 9921 . . . . . . . . . . 11 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℂ)
195 simpr 475 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ+)
196195rpne0d 11706 . . . . . . . . . . 11 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ≠ 0)
19732ad2antrr 757 . . . . . . . . . . 11 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐷 ∈ ℤ)
198194, 196, 197expne0d 12828 . . . . . . . . . 10 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑𝐷) ≠ 0)
199191, 193, 198redivcld 10699 . . . . . . . . 9 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝐹𝑑) / (𝑑𝐷)) ∈ ℝ)
20043ad2antrr 757 . . . . . . . . 9 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐵 ∈ ℝ)
201199, 200, 200absdifltd 13963 . . . . . . . 8 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵 ↔ ((𝐵𝐵) < ((𝐹𝑑) / (𝑑𝐷)) ∧ ((𝐹𝑑) / (𝑑𝐷)) < (𝐵 + 𝐵))))
202201simprbda 650 . . . . . . 7 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵) → (𝐵𝐵) < ((𝐹𝑑) / (𝑑𝐷)))
203187, 202eqbrtrrd 4598 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵) → 0 < ((𝐹𝑑) / (𝑑𝐷)))
204195, 197rpexpcld 12846 . . . . . . . 8 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑𝐷) ∈ ℝ+)
205191, 204gt0divd 11738 . . . . . . 7 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (0 < (𝐹𝑑) ↔ 0 < ((𝐹𝑑) / (𝑑𝐷))))
206205adantr 479 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵) → (0 < (𝐹𝑑) ↔ 0 < ((𝐹𝑑) / (𝑑𝐷))))
207203, 206mpbird 245 . . . . 5 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵) → 0 < (𝐹𝑑))
208184, 207syldan 485 . . . 4 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)) → 0 < (𝐹𝑑))
209 0red 9894 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 0 ∈ ℝ)
210 simplr 787 . . . . . . 7 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 𝑑 ∈ ℝ+)
211210rpred 11701 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 𝑑 ∈ ℝ)
212210rpgt0d 11704 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 0 < 𝑑)
21337, 211, 67sylancr 693 . . . . . . 7 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → (0[,]𝑑) ⊆ ℝ)
214213, 69syl6ss 3576 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → (0[,]𝑑) ⊆ ℂ)
21572ad3antrrr 761 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 𝐹 ∈ (ℂ–cn→ℂ))
21619ad4antr 763 . . . . . . 7 (((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) ∧ 𝑥 ∈ (0[,]𝑑)) → 𝐹 ∈ (Poly‘ℝ))
217213sselda 3564 . . . . . . 7 (((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) ∧ 𝑥 ∈ (0[,]𝑑)) → 𝑥 ∈ ℝ)
218216, 217plyrecld 29755 . . . . . 6 (((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) ∧ 𝑥 ∈ (0[,]𝑑)) → (𝐹𝑥) ∈ ℝ)
21996ad3antrrr 761 . . . . . . . 8 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → (𝐹‘0) = (𝐶‘0))
220 simplll 793 . . . . . . . . . 10 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 𝜑)
221 simpr1 1059 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 ∈ ℝ+𝑑 ∈ ℝ+ ∧ 0 < (𝐹𝑑))) → 𝐵 ∈ ℝ+)
222221rpgt0d 11704 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 ∈ ℝ+𝑑 ∈ ℝ+ ∧ 0 < (𝐹𝑑))) → 0 < 𝐵)
2232223anassrs 1281 . . . . . . . . . 10 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 0 < 𝐵)
22490, 43, 91mul2lt0rgt0 11762 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐵) → 𝐴 < 0)
225220, 223, 224syl2anc 690 . . . . . . . . 9 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 𝐴 < 0)
22685, 225syl5eqbrr 4610 . . . . . . . 8 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → (𝐶‘0) < 0)
227219, 226eqbrtrd 4596 . . . . . . 7 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → (𝐹‘0) < 0)
228 simpr 475 . . . . . . 7 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 0 < (𝐹𝑑))
229227, 228jca 552 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → ((𝐹‘0) < 0 ∧ 0 < (𝐹𝑑)))
230209, 211, 209, 212, 214, 215, 218, 229ivth 22944 . . . . 5 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → ∃𝑧 ∈ (0(,)𝑑)(𝐹𝑧) = 0)
231210, 110, 1113syl 18 . . . . 5 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → (∃𝑧 ∈ (0(,)𝑑)(𝐹𝑧) = 0 → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0))
232230, 231mpd 15 . . . 4 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
233208, 232syldan 485 . . 3 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)) → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
234169adantr 479 . . . 4 ((𝜑𝐵 ∈ ℝ+) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒))
235 simpr 475 . . . . 5 ((𝜑𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
236 simpr 475 . . . . . . . 8 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑒 = 𝐵) → 𝑒 = 𝐵)
237236breq2d 4586 . . . . . . 7 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑒 = 𝐵) → ((abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒 ↔ (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵))
238237imbi2d 328 . . . . . 6 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑒 = 𝐵) → ((𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) ↔ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)))
239238rexralbidv 3036 . . . . 5 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑒 = 𝐵) → (∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) ↔ ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)))
240235, 239rspcdv 3281 . . . 4 ((𝜑𝐵 ∈ ℝ+) → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)))
241234, 240mpd 15 . . 3 ((𝜑𝐵 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵))
242233, 241r19.29a 3056 . 2 ((𝜑𝐵 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
243 signsply0.2 . . . . 5 (𝜑𝐹 ≠ 0𝑝)
24424, 38dgreq0 23739 . . . . . . 7 (𝐹 ∈ (Poly‘ℝ) → (𝐹 = 0𝑝 ↔ (𝐶𝐷) = 0))
24519, 244syl 17 . . . . . 6 (𝜑 → (𝐹 = 0𝑝 ↔ (𝐶𝐷) = 0))
246245necon3bid 2822 . . . . 5 (𝜑 → (𝐹 ≠ 0𝑝 ↔ (𝐶𝐷) ≠ 0))
247243, 246mpbid 220 . . . 4 (𝜑 → (𝐶𝐷) ≠ 0)
24836neeq1i 2842 . . . 4 (𝐵 ≠ 0 ↔ (𝐶𝐷) ≠ 0)
249247, 248sylibr 222 . . 3 (𝜑𝐵 ≠ 0)
250 rpneg 11692 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 ∈ ℝ+ ↔ ¬ -𝐵 ∈ ℝ+))
251250biimprd 236 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (¬ -𝐵 ∈ ℝ+𝐵 ∈ ℝ+))
252251orrd 391 . . 3 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (-𝐵 ∈ ℝ+𝐵 ∈ ℝ+))
25343, 249, 252syl2anc 690 . 2 (𝜑 → (-𝐵 ∈ ℝ+𝐵 ∈ ℝ+))
254177, 242, 253mpjaodan 822 1 (𝜑 → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2776  wral 2892  wrex 2893  Vcvv 3169  cin 3535  wss 3536   class class class wbr 4574  cmpt 4634   Fn wfn 5782  wf 5783  cfv 5787  (class class class)co 6524  𝑓 cof 6767  cc 9787  cr 9788  0cc0 9789  1c1 9790   + caddc 9792   · cmul 9794  +∞cpnf 9924  *cxr 9926   < clt 9927  cle 9928  cmin 10114  -cneg 10115   / cdiv 10530  0cn0 11136  cz 11207  +crp 11661  (,)cioo 11999  [,)cico 12001  [,]cicc 12002  cexp 12674  abscabs 13765  𝑟 crli 14007  cnccncf 22415  0𝑝c0p 23156  Polycply 23658  coeffccoe 23660  degcdgr 23661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-inf2 8395  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866  ax-pre-sup 9867  ax-addf 9868  ax-mulf 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-int 4402  df-iun 4448  df-iin 4449  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-se 4985  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-isom 5796  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-of 6769  df-om 6932  df-1st 7033  df-2nd 7034  df-supp 7157  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-1o 7421  df-2o 7422  df-oadd 7425  df-er 7603  df-map 7720  df-pm 7721  df-ixp 7769  df-en 7816  df-dom 7817  df-sdom 7818  df-fin 7819  df-fsupp 8133  df-fi 8174  df-sup 8205  df-inf 8206  df-oi 8272  df-card 8622  df-cda 8847  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-div 10531  df-nn 10865  df-2 10923  df-3 10924  df-4 10925  df-5 10926  df-6 10927  df-7 10928  df-8 10929  df-9 10930  df-n0 11137  df-z 11208  df-dec 11323  df-uz 11517  df-q 11618  df-rp 11662  df-xneg 11775  df-xadd 11776  df-xmul 11777  df-ioo 12003  df-ioc 12004  df-ico 12005  df-icc 12006  df-fz 12150  df-fzo 12287  df-fl 12407  df-mod 12483  df-seq 12616  df-exp 12675  df-fac 12875  df-bc 12904  df-hash 12932  df-shft 13598  df-cj 13630  df-re 13631  df-im 13632  df-sqrt 13766  df-abs 13767  df-limsup 13993  df-clim 14010  df-rlim 14011  df-sum 14208  df-ef 14580  df-sin 14582  df-cos 14583  df-pi 14585  df-struct 15640  df-ndx 15641  df-slot 15642  df-base 15643  df-sets 15644  df-ress 15645  df-plusg 15724  df-mulr 15725  df-starv 15726  df-sca 15727  df-vsca 15728  df-ip 15729  df-tset 15730  df-ple 15731  df-ds 15734  df-unif 15735  df-hom 15736  df-cco 15737  df-rest 15849  df-topn 15850  df-0g 15868  df-gsum 15869  df-topgen 15870  df-pt 15871  df-prds 15874  df-xrs 15928  df-qtop 15933  df-imas 15934  df-xps 15936  df-mre 16012  df-mrc 16013  df-acs 16015  df-mgm 17008  df-sgrp 17050  df-mnd 17061  df-submnd 17102  df-mulg 17307  df-cntz 17516  df-cmn 17961  df-psmet 19502  df-xmet 19503  df-met 19504  df-bl 19505  df-mopn 19506  df-fbas 19507  df-fg 19508  df-cnfld 19511  df-top 20460  df-bases 20461  df-topon 20462  df-topsp 20463  df-cld 20572  df-ntr 20573  df-cls 20574  df-nei 20651  df-lp 20689  df-perf 20690  df-cn 20780  df-cnp 20781  df-haus 20868  df-tx 21114  df-hmeo 21307  df-fil 21399  df-fm 21491  df-flim 21492  df-flf 21493  df-xms 21873  df-ms 21874  df-tms 21875  df-cncf 22417  df-0p 23157  df-limc 23350  df-dv 23351  df-ply 23662  df-coe 23664  df-dgr 23665  df-log 24021  df-cxp 24022
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator