Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstcl Structured version   Visualization version   GIF version

Theorem signstcl 30419
Description: Closure of the zero skipping sign word. (Contributed by Thierry Arnoux, 9-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(#‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(#‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstcl ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) → ((𝑇𝐹)‘𝑁) ∈ {-1, 0, 1})
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑖,𝑁,𝑛   𝑓,𝑊,𝑖,𝑛
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝑁(𝑓,𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstcl
StepHypRef Expression
1 signsv.p . . 3 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
2 signsv.w . . 3 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
3 signsv.t . . 3 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(#‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
4 signsv.v . . 3 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(#‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
51, 2, 3, 4signstfval 30418 . 2 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) → ((𝑇𝐹)‘𝑁) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹𝑖)))))
61, 2signswbase 30408 . . 3 {-1, 0, 1} = (Base‘𝑊)
71, 2signswmnd 30411 . . . 4 𝑊 ∈ Mnd
87a1i 11 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) → 𝑊 ∈ Mnd)
9 fzo0ssnn0 12489 . . . . . 6 (0..^(#‘𝐹)) ⊆ ℕ0
10 nn0uz 11666 . . . . . 6 0 = (ℤ‘0)
119, 10sseqtri 3616 . . . . 5 (0..^(#‘𝐹)) ⊆ (ℤ‘0)
1211a1i 11 . . . 4 (𝐹 ∈ Word ℝ → (0..^(#‘𝐹)) ⊆ (ℤ‘0))
1312sselda 3583 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) → 𝑁 ∈ (ℤ‘0))
14 wrdf 13249 . . . . . . 7 (𝐹 ∈ Word ℝ → 𝐹:(0..^(#‘𝐹))⟶ℝ)
1514ad2antrr 761 . . . . . 6 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) ∧ 𝑖 ∈ (0...𝑁)) → 𝐹:(0..^(#‘𝐹))⟶ℝ)
16 fzssfzo 30391 . . . . . . . 8 (𝑁 ∈ (0..^(#‘𝐹)) → (0...𝑁) ⊆ (0..^(#‘𝐹)))
1716adantl 482 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) → (0...𝑁) ⊆ (0..^(#‘𝐹)))
1817sselda 3583 . . . . . 6 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) ∧ 𝑖 ∈ (0...𝑁)) → 𝑖 ∈ (0..^(#‘𝐹)))
1915, 18ffvelrnd 6316 . . . . 5 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) ∧ 𝑖 ∈ (0...𝑁)) → (𝐹𝑖) ∈ ℝ)
2019rexrd 10033 . . . 4 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) ∧ 𝑖 ∈ (0...𝑁)) → (𝐹𝑖) ∈ ℝ*)
21 sgncl 30378 . . . 4 ((𝐹𝑖) ∈ ℝ* → (sgn‘(𝐹𝑖)) ∈ {-1, 0, 1})
2220, 21syl 17 . . 3 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) ∧ 𝑖 ∈ (0...𝑁)) → (sgn‘(𝐹𝑖)) ∈ {-1, 0, 1})
236, 8, 13, 22gsumncl 30392 . 2 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) → (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹𝑖)))) ∈ {-1, 0, 1})
245, 23eqeltrd 2698 1 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) → ((𝑇𝐹)‘𝑁) ∈ {-1, 0, 1})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  wss 3555  ifcif 4058  {cpr 4150  {ctp 4152  cop 4154  cmpt 4673  wf 5843  cfv 5847  (class class class)co 6604  cmpt2 6606  cr 9879  0cc0 9880  1c1 9881  *cxr 10017  cmin 10210  -cneg 10211  0cn0 11236  cuz 11631  ...cfz 12268  ..^cfzo 12406  #chash 13057  Word cword 13230  sgncsgn 13760  Σcsu 14350  ndxcnx 15778  Basecbs 15781  +gcplusg 15862   Σg cgsu 16022  Mndcmnd 17215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-seq 12742  df-hash 13058  df-word 13238  df-sgn 13761  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-plusg 15875  df-0g 16023  df-gsum 16024  df-mgm 17163  df-sgrp 17205  df-mnd 17216
This theorem is referenced by:  signsvtn0  30424  signstfvneq0  30426  signstfvcl  30427  signstfveq0  30431
  Copyright terms: Public domain W3C validator