Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signswch Structured version   Visualization version   GIF version

Theorem signswch 30766
Description: The zero-skipping operation changes value when the operands change signs. (Contributed by Thierry Arnoux, 9-Oct-2018.)
Hypotheses
Ref Expression
signsw.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsw.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
Assertion
Ref Expression
signswch ((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → ((𝑋 𝑌) ≠ 𝑋 ↔ (𝑋 · 𝑌) < 0))
Distinct variable groups:   𝑎,𝑏,𝑋   𝑌,𝑎,𝑏
Allowed substitution hints:   (𝑎,𝑏)   𝑊(𝑎,𝑏)

Proof of Theorem signswch
StepHypRef Expression
1 df-pr 4213 . . . . . 6 {-1, 1} = ({-1} ∪ {1})
2 snsstp1 4379 . . . . . . 7 {-1} ⊆ {-1, 0, 1}
3 snsstp3 4381 . . . . . . 7 {1} ⊆ {-1, 0, 1}
42, 3unssi 3821 . . . . . 6 ({-1} ∪ {1}) ⊆ {-1, 0, 1}
51, 4eqsstri 3668 . . . . 5 {-1, 1} ⊆ {-1, 0, 1}
65sseli 3632 . . . 4 (𝑋 ∈ {-1, 1} → 𝑋 ∈ {-1, 0, 1})
7 signsw.p . . . . 5 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
87signspval 30757 . . . 4 ((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → (𝑋 𝑌) = if(𝑌 = 0, 𝑋, 𝑌))
96, 8sylan 487 . . 3 ((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → (𝑋 𝑌) = if(𝑌 = 0, 𝑋, 𝑌))
109neeq1d 2882 . 2 ((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → ((𝑋 𝑌) ≠ 𝑋 ↔ if(𝑌 = 0, 𝑋, 𝑌) ≠ 𝑋))
11 neeq1 2885 . . . 4 (𝑋 = if(𝑌 = 0, 𝑋, 𝑌) → (𝑋𝑋 ↔ if(𝑌 = 0, 𝑋, 𝑌) ≠ 𝑋))
1211bibi1d 332 . . 3 (𝑋 = if(𝑌 = 0, 𝑋, 𝑌) → ((𝑋𝑋 ↔ (𝑋 · 𝑌) < 0) ↔ (if(𝑌 = 0, 𝑋, 𝑌) ≠ 𝑋 ↔ (𝑋 · 𝑌) < 0)))
13 neeq1 2885 . . . 4 (𝑌 = if(𝑌 = 0, 𝑋, 𝑌) → (𝑌𝑋 ↔ if(𝑌 = 0, 𝑋, 𝑌) ≠ 𝑋))
1413bibi1d 332 . . 3 (𝑌 = if(𝑌 = 0, 𝑋, 𝑌) → ((𝑌𝑋 ↔ (𝑋 · 𝑌) < 0) ↔ (if(𝑌 = 0, 𝑋, 𝑌) ≠ 𝑋 ↔ (𝑋 · 𝑌) < 0)))
15 neirr 2832 . . . . 5 ¬ 𝑋𝑋
1615a1i 11 . . . 4 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → ¬ 𝑋𝑋)
17 0re 10078 . . . . . 6 0 ∈ ℝ
1817ltnri 10184 . . . . 5 ¬ 0 < 0
19 simpr 476 . . . . . . . 8 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → 𝑌 = 0)
2019oveq2d 6706 . . . . . . 7 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → (𝑋 · 𝑌) = (𝑋 · 0))
21 neg1cn 11162 . . . . . . . . . 10 -1 ∈ ℂ
22 ax-1cn 10032 . . . . . . . . . 10 1 ∈ ℂ
23 prssi 4385 . . . . . . . . . 10 ((-1 ∈ ℂ ∧ 1 ∈ ℂ) → {-1, 1} ⊆ ℂ)
2421, 22, 23mp2an 708 . . . . . . . . 9 {-1, 1} ⊆ ℂ
25 simpll 805 . . . . . . . . 9 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → 𝑋 ∈ {-1, 1})
2624, 25sseldi 3634 . . . . . . . 8 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → 𝑋 ∈ ℂ)
2726mul01d 10273 . . . . . . 7 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → (𝑋 · 0) = 0)
2820, 27eqtrd 2685 . . . . . 6 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → (𝑋 · 𝑌) = 0)
2928breq1d 4695 . . . . 5 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → ((𝑋 · 𝑌) < 0 ↔ 0 < 0))
3018, 29mtbiri 316 . . . 4 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → ¬ (𝑋 · 𝑌) < 0)
3116, 302falsed 365 . . 3 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → (𝑋𝑋 ↔ (𝑋 · 𝑌) < 0))
32 simplr 807 . . . . . . . 8 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → 𝑌 ∈ {-1, 0, 1})
33 tpcomb 4318 . . . . . . . 8 {-1, 0, 1} = {-1, 1, 0}
3432, 33syl6eleq 2740 . . . . . . 7 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → 𝑌 ∈ {-1, 1, 0})
35 simpr 476 . . . . . . . 8 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → ¬ 𝑌 = 0)
3635neqned 2830 . . . . . . 7 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → 𝑌 ≠ 0)
3734, 36jca 553 . . . . . 6 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → (𝑌 ∈ {-1, 1, 0} ∧ 𝑌 ≠ 0))
38 eldifsn 4350 . . . . . . 7 (𝑌 ∈ ({-1, 1, 0} ∖ {0}) ↔ (𝑌 ∈ {-1, 1, 0} ∧ 𝑌 ≠ 0))
39 neg1ne0 11164 . . . . . . . . 9 -1 ≠ 0
40 ax-1ne0 10043 . . . . . . . . 9 1 ≠ 0
41 diftpsn3 4364 . . . . . . . . 9 ((-1 ≠ 0 ∧ 1 ≠ 0) → ({-1, 1, 0} ∖ {0}) = {-1, 1})
4239, 40, 41mp2an 708 . . . . . . . 8 ({-1, 1, 0} ∖ {0}) = {-1, 1}
4342eleq2i 2722 . . . . . . 7 (𝑌 ∈ ({-1, 1, 0} ∖ {0}) ↔ 𝑌 ∈ {-1, 1})
4438, 43bitr3i 266 . . . . . 6 ((𝑌 ∈ {-1, 1, 0} ∧ 𝑌 ≠ 0) ↔ 𝑌 ∈ {-1, 1})
4537, 44sylib 208 . . . . 5 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → 𝑌 ∈ {-1, 1})
46 neirr 2832 . . . . . . . . . . 11 ¬ -1 ≠ -1
47 0le1 10589 . . . . . . . . . . . . 13 0 ≤ 1
48 1re 10077 . . . . . . . . . . . . . 14 1 ∈ ℝ
4917, 48lenlti 10195 . . . . . . . . . . . . 13 (0 ≤ 1 ↔ ¬ 1 < 0)
5047, 49mpbi 220 . . . . . . . . . . . 12 ¬ 1 < 0
51 neg1mulneg1e1 11283 . . . . . . . . . . . . 13 (-1 · -1) = 1
5251breq1i 4692 . . . . . . . . . . . 12 ((-1 · -1) < 0 ↔ 1 < 0)
5350, 52mtbir 312 . . . . . . . . . . 11 ¬ (-1 · -1) < 0
5446, 532false 364 . . . . . . . . . 10 (-1 ≠ -1 ↔ (-1 · -1) < 0)
55 neeq1 2885 . . . . . . . . . . 11 (𝑌 = -1 → (𝑌 ≠ -1 ↔ -1 ≠ -1))
56 oveq2 6698 . . . . . . . . . . . 12 (𝑌 = -1 → (-1 · 𝑌) = (-1 · -1))
5756breq1d 4695 . . . . . . . . . . 11 (𝑌 = -1 → ((-1 · 𝑌) < 0 ↔ (-1 · -1) < 0))
5855, 57bibi12d 334 . . . . . . . . . 10 (𝑌 = -1 → ((𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0) ↔ (-1 ≠ -1 ↔ (-1 · -1) < 0)))
5954, 58mpbiri 248 . . . . . . . . 9 (𝑌 = -1 → (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0))
6059adantl 481 . . . . . . . 8 ((𝑌 ∈ {-1, 1} ∧ 𝑌 = -1) → (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0))
61 neg1rr 11163 . . . . . . . . . . . 12 -1 ∈ ℝ
62 neg1lt0 11165 . . . . . . . . . . . . 13 -1 < 0
63 0lt1 10588 . . . . . . . . . . . . 13 0 < 1
6461, 17, 48lttri 10201 . . . . . . . . . . . . 13 ((-1 < 0 ∧ 0 < 1) → -1 < 1)
6562, 63, 64mp2an 708 . . . . . . . . . . . 12 -1 < 1
6661, 65gtneii 10187 . . . . . . . . . . 11 1 ≠ -1
6721mulid1i 10080 . . . . . . . . . . . 12 (-1 · 1) = -1
6867, 62eqbrtri 4706 . . . . . . . . . . 11 (-1 · 1) < 0
6966, 682th 254 . . . . . . . . . 10 (1 ≠ -1 ↔ (-1 · 1) < 0)
70 neeq1 2885 . . . . . . . . . . 11 (𝑌 = 1 → (𝑌 ≠ -1 ↔ 1 ≠ -1))
71 oveq2 6698 . . . . . . . . . . . 12 (𝑌 = 1 → (-1 · 𝑌) = (-1 · 1))
7271breq1d 4695 . . . . . . . . . . 11 (𝑌 = 1 → ((-1 · 𝑌) < 0 ↔ (-1 · 1) < 0))
7370, 72bibi12d 334 . . . . . . . . . 10 (𝑌 = 1 → ((𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0) ↔ (1 ≠ -1 ↔ (-1 · 1) < 0)))
7469, 73mpbiri 248 . . . . . . . . 9 (𝑌 = 1 → (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0))
7574adantl 481 . . . . . . . 8 ((𝑌 ∈ {-1, 1} ∧ 𝑌 = 1) → (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0))
76 elpri 4230 . . . . . . . 8 (𝑌 ∈ {-1, 1} → (𝑌 = -1 ∨ 𝑌 = 1))
7760, 75, 76mpjaodan 844 . . . . . . 7 (𝑌 ∈ {-1, 1} → (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0))
7877adantr 480 . . . . . 6 ((𝑌 ∈ {-1, 1} ∧ 𝑋 = -1) → (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0))
79 neeq2 2886 . . . . . . . 8 (𝑋 = -1 → (𝑌𝑋𝑌 ≠ -1))
80 oveq1 6697 . . . . . . . . 9 (𝑋 = -1 → (𝑋 · 𝑌) = (-1 · 𝑌))
8180breq1d 4695 . . . . . . . 8 (𝑋 = -1 → ((𝑋 · 𝑌) < 0 ↔ (-1 · 𝑌) < 0))
8279, 81bibi12d 334 . . . . . . 7 (𝑋 = -1 → ((𝑌𝑋 ↔ (𝑋 · 𝑌) < 0) ↔ (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0)))
8382adantl 481 . . . . . 6 ((𝑌 ∈ {-1, 1} ∧ 𝑋 = -1) → ((𝑌𝑋 ↔ (𝑋 · 𝑌) < 0) ↔ (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0)))
8478, 83mpbird 247 . . . . 5 ((𝑌 ∈ {-1, 1} ∧ 𝑋 = -1) → (𝑌𝑋 ↔ (𝑋 · 𝑌) < 0))
8545, 84sylan 487 . . . 4 ((((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) ∧ 𝑋 = -1) → (𝑌𝑋 ↔ (𝑋 · 𝑌) < 0))
8666necomi 2877 . . . . . . . . . . 11 -1 ≠ 1
8721, 22mulcomi 10084 . . . . . . . . . . . . 13 (-1 · 1) = (1 · -1)
8887breq1i 4692 . . . . . . . . . . . 12 ((-1 · 1) < 0 ↔ (1 · -1) < 0)
8968, 88mpbi 220 . . . . . . . . . . 11 (1 · -1) < 0
9086, 892th 254 . . . . . . . . . 10 (-1 ≠ 1 ↔ (1 · -1) < 0)
91 neeq1 2885 . . . . . . . . . . 11 (𝑌 = -1 → (𝑌 ≠ 1 ↔ -1 ≠ 1))
92 oveq2 6698 . . . . . . . . . . . 12 (𝑌 = -1 → (1 · 𝑌) = (1 · -1))
9392breq1d 4695 . . . . . . . . . . 11 (𝑌 = -1 → ((1 · 𝑌) < 0 ↔ (1 · -1) < 0))
9491, 93bibi12d 334 . . . . . . . . . 10 (𝑌 = -1 → ((𝑌 ≠ 1 ↔ (1 · 𝑌) < 0) ↔ (-1 ≠ 1 ↔ (1 · -1) < 0)))
9590, 94mpbiri 248 . . . . . . . . 9 (𝑌 = -1 → (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0))
9695adantl 481 . . . . . . . 8 ((𝑌 ∈ {-1, 1} ∧ 𝑌 = -1) → (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0))
97 neirr 2832 . . . . . . . . . . 11 ¬ 1 ≠ 1
9822mulid1i 10080 . . . . . . . . . . . . 13 (1 · 1) = 1
9998breq1i 4692 . . . . . . . . . . . 12 ((1 · 1) < 0 ↔ 1 < 0)
10050, 99mtbir 312 . . . . . . . . . . 11 ¬ (1 · 1) < 0
10197, 1002false 364 . . . . . . . . . 10 (1 ≠ 1 ↔ (1 · 1) < 0)
102 neeq1 2885 . . . . . . . . . . 11 (𝑌 = 1 → (𝑌 ≠ 1 ↔ 1 ≠ 1))
103 oveq2 6698 . . . . . . . . . . . 12 (𝑌 = 1 → (1 · 𝑌) = (1 · 1))
104103breq1d 4695 . . . . . . . . . . 11 (𝑌 = 1 → ((1 · 𝑌) < 0 ↔ (1 · 1) < 0))
105102, 104bibi12d 334 . . . . . . . . . 10 (𝑌 = 1 → ((𝑌 ≠ 1 ↔ (1 · 𝑌) < 0) ↔ (1 ≠ 1 ↔ (1 · 1) < 0)))
106101, 105mpbiri 248 . . . . . . . . 9 (𝑌 = 1 → (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0))
107106adantl 481 . . . . . . . 8 ((𝑌 ∈ {-1, 1} ∧ 𝑌 = 1) → (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0))
10896, 107, 76mpjaodan 844 . . . . . . 7 (𝑌 ∈ {-1, 1} → (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0))
109108adantr 480 . . . . . 6 ((𝑌 ∈ {-1, 1} ∧ 𝑋 = 1) → (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0))
110 neeq2 2886 . . . . . . . 8 (𝑋 = 1 → (𝑌𝑋𝑌 ≠ 1))
111 oveq1 6697 . . . . . . . . 9 (𝑋 = 1 → (𝑋 · 𝑌) = (1 · 𝑌))
112111breq1d 4695 . . . . . . . 8 (𝑋 = 1 → ((𝑋 · 𝑌) < 0 ↔ (1 · 𝑌) < 0))
113110, 112bibi12d 334 . . . . . . 7 (𝑋 = 1 → ((𝑌𝑋 ↔ (𝑋 · 𝑌) < 0) ↔ (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0)))
114113adantl 481 . . . . . 6 ((𝑌 ∈ {-1, 1} ∧ 𝑋 = 1) → ((𝑌𝑋 ↔ (𝑋 · 𝑌) < 0) ↔ (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0)))
115109, 114mpbird 247 . . . . 5 ((𝑌 ∈ {-1, 1} ∧ 𝑋 = 1) → (𝑌𝑋 ↔ (𝑋 · 𝑌) < 0))
11645, 115sylan 487 . . . 4 ((((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) ∧ 𝑋 = 1) → (𝑌𝑋 ↔ (𝑋 · 𝑌) < 0))
117 elpri 4230 . . . . 5 (𝑋 ∈ {-1, 1} → (𝑋 = -1 ∨ 𝑋 = 1))
118117ad2antrr 762 . . . 4 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → (𝑋 = -1 ∨ 𝑋 = 1))
11985, 116, 118mpjaodan 844 . . 3 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → (𝑌𝑋 ↔ (𝑋 · 𝑌) < 0))
12012, 14, 31, 119ifbothda 4156 . 2 ((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → (if(𝑌 = 0, 𝑋, 𝑌) ≠ 𝑋 ↔ (𝑋 · 𝑌) < 0))
12110, 120bitrd 268 1 ((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → ((𝑋 𝑌) ≠ 𝑋 ↔ (𝑋 · 𝑌) < 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1523  wcel 2030  wne 2823  cdif 3604  cun 3605  wss 3607  ifcif 4119  {csn 4210  {cpr 4212  {ctp 4214  cop 4216   class class class wbr 4685  cfv 5926  (class class class)co 6690  cmpt2 6692  cc 9972  0cc0 9974  1c1 9975   · cmul 9979   < clt 10112  cle 10113  -cneg 10305  ndxcnx 15901  Basecbs 15904  +gcplusg 15988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307
This theorem is referenced by:  signsvfn  30787
  Copyright terms: Public domain W3C validator