Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signswch Structured version   Visualization version   GIF version

Theorem signswch 29770
Description: The zero-skipping operation changes value when the operands change signs. (Contributed by Thierry Arnoux, 9-Oct-2018.)
Hypotheses
Ref Expression
signsw.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsw.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
Assertion
Ref Expression
signswch ((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → ((𝑋 𝑌) ≠ 𝑋 ↔ (𝑋 · 𝑌) < 0))
Distinct variable groups:   𝑎,𝑏,𝑋   𝑌,𝑎,𝑏
Allowed substitution hints:   (𝑎,𝑏)   𝑊(𝑎,𝑏)

Proof of Theorem signswch
StepHypRef Expression
1 df-pr 4127 . . . . . 6 {-1, 1} = ({-1} ∪ {1})
2 snsstp1 4286 . . . . . . 7 {-1} ⊆ {-1, 0, 1}
3 snsstp3 4288 . . . . . . 7 {1} ⊆ {-1, 0, 1}
42, 3unssi 3749 . . . . . 6 ({-1} ∪ {1}) ⊆ {-1, 0, 1}
51, 4eqsstri 3597 . . . . 5 {-1, 1} ⊆ {-1, 0, 1}
65sseli 3563 . . . 4 (𝑋 ∈ {-1, 1} → 𝑋 ∈ {-1, 0, 1})
7 signsw.p . . . . 5 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
87signspval 29761 . . . 4 ((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → (𝑋 𝑌) = if(𝑌 = 0, 𝑋, 𝑌))
96, 8sylan 486 . . 3 ((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → (𝑋 𝑌) = if(𝑌 = 0, 𝑋, 𝑌))
109neeq1d 2840 . 2 ((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → ((𝑋 𝑌) ≠ 𝑋 ↔ if(𝑌 = 0, 𝑋, 𝑌) ≠ 𝑋))
11 neeq1 2843 . . . 4 (𝑋 = if(𝑌 = 0, 𝑋, 𝑌) → (𝑋𝑋 ↔ if(𝑌 = 0, 𝑋, 𝑌) ≠ 𝑋))
1211bibi1d 331 . . 3 (𝑋 = if(𝑌 = 0, 𝑋, 𝑌) → ((𝑋𝑋 ↔ (𝑋 · 𝑌) < 0) ↔ (if(𝑌 = 0, 𝑋, 𝑌) ≠ 𝑋 ↔ (𝑋 · 𝑌) < 0)))
13 neeq1 2843 . . . 4 (𝑌 = if(𝑌 = 0, 𝑋, 𝑌) → (𝑌𝑋 ↔ if(𝑌 = 0, 𝑋, 𝑌) ≠ 𝑋))
1413bibi1d 331 . . 3 (𝑌 = if(𝑌 = 0, 𝑋, 𝑌) → ((𝑌𝑋 ↔ (𝑋 · 𝑌) < 0) ↔ (if(𝑌 = 0, 𝑋, 𝑌) ≠ 𝑋 ↔ (𝑋 · 𝑌) < 0)))
15 neirr 2790 . . . . 5 ¬ 𝑋𝑋
1615a1i 11 . . . 4 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → ¬ 𝑋𝑋)
17 0re 9896 . . . . . 6 0 ∈ ℝ
1817ltnri 9997 . . . . 5 ¬ 0 < 0
19 simpr 475 . . . . . . . 8 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → 𝑌 = 0)
2019oveq2d 6543 . . . . . . 7 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → (𝑋 · 𝑌) = (𝑋 · 0))
21 neg1cn 10971 . . . . . . . . . 10 -1 ∈ ℂ
22 ax-1cn 9850 . . . . . . . . . 10 1 ∈ ℂ
23 prssi 4292 . . . . . . . . . 10 ((-1 ∈ ℂ ∧ 1 ∈ ℂ) → {-1, 1} ⊆ ℂ)
2421, 22, 23mp2an 703 . . . . . . . . 9 {-1, 1} ⊆ ℂ
25 simpll 785 . . . . . . . . 9 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → 𝑋 ∈ {-1, 1})
2624, 25sseldi 3565 . . . . . . . 8 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → 𝑋 ∈ ℂ)
2726mul01d 10086 . . . . . . 7 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → (𝑋 · 0) = 0)
2820, 27eqtrd 2643 . . . . . 6 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → (𝑋 · 𝑌) = 0)
2928breq1d 4587 . . . . 5 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → ((𝑋 · 𝑌) < 0 ↔ 0 < 0))
3018, 29mtbiri 315 . . . 4 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → ¬ (𝑋 · 𝑌) < 0)
3116, 302falsed 364 . . 3 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → (𝑋𝑋 ↔ (𝑋 · 𝑌) < 0))
32 simplr 787 . . . . . . . 8 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → 𝑌 ∈ {-1, 0, 1})
33 tpcomb 4229 . . . . . . . 8 {-1, 0, 1} = {-1, 1, 0}
3432, 33syl6eleq 2697 . . . . . . 7 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → 𝑌 ∈ {-1, 1, 0})
35 simpr 475 . . . . . . . 8 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → ¬ 𝑌 = 0)
3635neqned 2788 . . . . . . 7 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → 𝑌 ≠ 0)
3734, 36jca 552 . . . . . 6 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → (𝑌 ∈ {-1, 1, 0} ∧ 𝑌 ≠ 0))
38 eldifsn 4259 . . . . . . 7 (𝑌 ∈ ({-1, 1, 0} ∖ {0}) ↔ (𝑌 ∈ {-1, 1, 0} ∧ 𝑌 ≠ 0))
39 neg1ne0 10973 . . . . . . . . 9 -1 ≠ 0
40 ax-1ne0 9861 . . . . . . . . 9 1 ≠ 0
41 diftpsn3 4272 . . . . . . . . 9 ((-1 ≠ 0 ∧ 1 ≠ 0) → ({-1, 1, 0} ∖ {0}) = {-1, 1})
4239, 40, 41mp2an 703 . . . . . . . 8 ({-1, 1, 0} ∖ {0}) = {-1, 1}
4342eleq2i 2679 . . . . . . 7 (𝑌 ∈ ({-1, 1, 0} ∖ {0}) ↔ 𝑌 ∈ {-1, 1})
4438, 43bitr3i 264 . . . . . 6 ((𝑌 ∈ {-1, 1, 0} ∧ 𝑌 ≠ 0) ↔ 𝑌 ∈ {-1, 1})
4537, 44sylib 206 . . . . 5 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → 𝑌 ∈ {-1, 1})
46 neirr 2790 . . . . . . . . . . 11 ¬ -1 ≠ -1
47 0le1 10400 . . . . . . . . . . . . 13 0 ≤ 1
48 1re 9895 . . . . . . . . . . . . . 14 1 ∈ ℝ
4917, 48lenlti 10008 . . . . . . . . . . . . 13 (0 ≤ 1 ↔ ¬ 1 < 0)
5047, 49mpbi 218 . . . . . . . . . . . 12 ¬ 1 < 0
51 neg1mulneg1e1 11092 . . . . . . . . . . . . 13 (-1 · -1) = 1
5251breq1i 4584 . . . . . . . . . . . 12 ((-1 · -1) < 0 ↔ 1 < 0)
5350, 52mtbir 311 . . . . . . . . . . 11 ¬ (-1 · -1) < 0
5446, 532false 363 . . . . . . . . . 10 (-1 ≠ -1 ↔ (-1 · -1) < 0)
55 neeq1 2843 . . . . . . . . . . 11 (𝑌 = -1 → (𝑌 ≠ -1 ↔ -1 ≠ -1))
56 oveq2 6535 . . . . . . . . . . . 12 (𝑌 = -1 → (-1 · 𝑌) = (-1 · -1))
5756breq1d 4587 . . . . . . . . . . 11 (𝑌 = -1 → ((-1 · 𝑌) < 0 ↔ (-1 · -1) < 0))
5855, 57bibi12d 333 . . . . . . . . . 10 (𝑌 = -1 → ((𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0) ↔ (-1 ≠ -1 ↔ (-1 · -1) < 0)))
5954, 58mpbiri 246 . . . . . . . . 9 (𝑌 = -1 → (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0))
6059adantl 480 . . . . . . . 8 ((𝑌 ∈ {-1, 1} ∧ 𝑌 = -1) → (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0))
61 neg1rr 10972 . . . . . . . . . . . 12 -1 ∈ ℝ
62 neg1lt0 10974 . . . . . . . . . . . . 13 -1 < 0
63 0lt1 10399 . . . . . . . . . . . . 13 0 < 1
6461, 17, 48lttri 10014 . . . . . . . . . . . . 13 ((-1 < 0 ∧ 0 < 1) → -1 < 1)
6562, 63, 64mp2an 703 . . . . . . . . . . . 12 -1 < 1
6661, 65gtneii 10000 . . . . . . . . . . 11 1 ≠ -1
6721mulid1i 9898 . . . . . . . . . . . 12 (-1 · 1) = -1
6867, 62eqbrtri 4598 . . . . . . . . . . 11 (-1 · 1) < 0
6966, 682th 252 . . . . . . . . . 10 (1 ≠ -1 ↔ (-1 · 1) < 0)
70 neeq1 2843 . . . . . . . . . . 11 (𝑌 = 1 → (𝑌 ≠ -1 ↔ 1 ≠ -1))
71 oveq2 6535 . . . . . . . . . . . 12 (𝑌 = 1 → (-1 · 𝑌) = (-1 · 1))
7271breq1d 4587 . . . . . . . . . . 11 (𝑌 = 1 → ((-1 · 𝑌) < 0 ↔ (-1 · 1) < 0))
7370, 72bibi12d 333 . . . . . . . . . 10 (𝑌 = 1 → ((𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0) ↔ (1 ≠ -1 ↔ (-1 · 1) < 0)))
7469, 73mpbiri 246 . . . . . . . . 9 (𝑌 = 1 → (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0))
7574adantl 480 . . . . . . . 8 ((𝑌 ∈ {-1, 1} ∧ 𝑌 = 1) → (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0))
76 elpri 4144 . . . . . . . 8 (𝑌 ∈ {-1, 1} → (𝑌 = -1 ∨ 𝑌 = 1))
7760, 75, 76mpjaodan 822 . . . . . . 7 (𝑌 ∈ {-1, 1} → (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0))
7877adantr 479 . . . . . 6 ((𝑌 ∈ {-1, 1} ∧ 𝑋 = -1) → (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0))
79 neeq2 2844 . . . . . . . 8 (𝑋 = -1 → (𝑌𝑋𝑌 ≠ -1))
80 oveq1 6534 . . . . . . . . 9 (𝑋 = -1 → (𝑋 · 𝑌) = (-1 · 𝑌))
8180breq1d 4587 . . . . . . . 8 (𝑋 = -1 → ((𝑋 · 𝑌) < 0 ↔ (-1 · 𝑌) < 0))
8279, 81bibi12d 333 . . . . . . 7 (𝑋 = -1 → ((𝑌𝑋 ↔ (𝑋 · 𝑌) < 0) ↔ (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0)))
8382adantl 480 . . . . . 6 ((𝑌 ∈ {-1, 1} ∧ 𝑋 = -1) → ((𝑌𝑋 ↔ (𝑋 · 𝑌) < 0) ↔ (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0)))
8478, 83mpbird 245 . . . . 5 ((𝑌 ∈ {-1, 1} ∧ 𝑋 = -1) → (𝑌𝑋 ↔ (𝑋 · 𝑌) < 0))
8545, 84sylan 486 . . . 4 ((((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) ∧ 𝑋 = -1) → (𝑌𝑋 ↔ (𝑋 · 𝑌) < 0))
8666necomi 2835 . . . . . . . . . . 11 -1 ≠ 1
8721, 22mulcomi 9902 . . . . . . . . . . . . 13 (-1 · 1) = (1 · -1)
8887breq1i 4584 . . . . . . . . . . . 12 ((-1 · 1) < 0 ↔ (1 · -1) < 0)
8968, 88mpbi 218 . . . . . . . . . . 11 (1 · -1) < 0
9086, 892th 252 . . . . . . . . . 10 (-1 ≠ 1 ↔ (1 · -1) < 0)
91 neeq1 2843 . . . . . . . . . . 11 (𝑌 = -1 → (𝑌 ≠ 1 ↔ -1 ≠ 1))
92 oveq2 6535 . . . . . . . . . . . 12 (𝑌 = -1 → (1 · 𝑌) = (1 · -1))
9392breq1d 4587 . . . . . . . . . . 11 (𝑌 = -1 → ((1 · 𝑌) < 0 ↔ (1 · -1) < 0))
9491, 93bibi12d 333 . . . . . . . . . 10 (𝑌 = -1 → ((𝑌 ≠ 1 ↔ (1 · 𝑌) < 0) ↔ (-1 ≠ 1 ↔ (1 · -1) < 0)))
9590, 94mpbiri 246 . . . . . . . . 9 (𝑌 = -1 → (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0))
9695adantl 480 . . . . . . . 8 ((𝑌 ∈ {-1, 1} ∧ 𝑌 = -1) → (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0))
97 neirr 2790 . . . . . . . . . . 11 ¬ 1 ≠ 1
9822mulid1i 9898 . . . . . . . . . . . . 13 (1 · 1) = 1
9998breq1i 4584 . . . . . . . . . . . 12 ((1 · 1) < 0 ↔ 1 < 0)
10050, 99mtbir 311 . . . . . . . . . . 11 ¬ (1 · 1) < 0
10197, 1002false 363 . . . . . . . . . 10 (1 ≠ 1 ↔ (1 · 1) < 0)
102 neeq1 2843 . . . . . . . . . . 11 (𝑌 = 1 → (𝑌 ≠ 1 ↔ 1 ≠ 1))
103 oveq2 6535 . . . . . . . . . . . 12 (𝑌 = 1 → (1 · 𝑌) = (1 · 1))
104103breq1d 4587 . . . . . . . . . . 11 (𝑌 = 1 → ((1 · 𝑌) < 0 ↔ (1 · 1) < 0))
105102, 104bibi12d 333 . . . . . . . . . 10 (𝑌 = 1 → ((𝑌 ≠ 1 ↔ (1 · 𝑌) < 0) ↔ (1 ≠ 1 ↔ (1 · 1) < 0)))
106101, 105mpbiri 246 . . . . . . . . 9 (𝑌 = 1 → (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0))
107106adantl 480 . . . . . . . 8 ((𝑌 ∈ {-1, 1} ∧ 𝑌 = 1) → (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0))
10896, 107, 76mpjaodan 822 . . . . . . 7 (𝑌 ∈ {-1, 1} → (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0))
109108adantr 479 . . . . . 6 ((𝑌 ∈ {-1, 1} ∧ 𝑋 = 1) → (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0))
110 neeq2 2844 . . . . . . . 8 (𝑋 = 1 → (𝑌𝑋𝑌 ≠ 1))
111 oveq1 6534 . . . . . . . . 9 (𝑋 = 1 → (𝑋 · 𝑌) = (1 · 𝑌))
112111breq1d 4587 . . . . . . . 8 (𝑋 = 1 → ((𝑋 · 𝑌) < 0 ↔ (1 · 𝑌) < 0))
113110, 112bibi12d 333 . . . . . . 7 (𝑋 = 1 → ((𝑌𝑋 ↔ (𝑋 · 𝑌) < 0) ↔ (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0)))
114113adantl 480 . . . . . 6 ((𝑌 ∈ {-1, 1} ∧ 𝑋 = 1) → ((𝑌𝑋 ↔ (𝑋 · 𝑌) < 0) ↔ (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0)))
115109, 114mpbird 245 . . . . 5 ((𝑌 ∈ {-1, 1} ∧ 𝑋 = 1) → (𝑌𝑋 ↔ (𝑋 · 𝑌) < 0))
11645, 115sylan 486 . . . 4 ((((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) ∧ 𝑋 = 1) → (𝑌𝑋 ↔ (𝑋 · 𝑌) < 0))
117 elpri 4144 . . . . 5 (𝑋 ∈ {-1, 1} → (𝑋 = -1 ∨ 𝑋 = 1))
118117ad2antrr 757 . . . 4 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → (𝑋 = -1 ∨ 𝑋 = 1))
11985, 116, 118mpjaodan 822 . . 3 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → (𝑌𝑋 ↔ (𝑋 · 𝑌) < 0))
12012, 14, 31, 119ifbothda 4072 . 2 ((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → (if(𝑌 = 0, 𝑋, 𝑌) ≠ 𝑋 ↔ (𝑋 · 𝑌) < 0))
12110, 120bitrd 266 1 ((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → ((𝑋 𝑌) ≠ 𝑋 ↔ (𝑋 · 𝑌) < 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382   = wceq 1474  wcel 1976  wne 2779  cdif 3536  cun 3537  wss 3539  ifcif 4035  {csn 4124  {cpr 4126  {ctp 4128  cop 4130   class class class wbr 4577  cfv 5790  (class class class)co 6527  cmpt2 6529  cc 9790  0cc0 9792  1c1 9793   · cmul 9797   < clt 9930  cle 9931  -cneg 10118  ndxcnx 15638  Basecbs 15641  +gcplusg 15714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-po 4949  df-so 4950  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120
This theorem is referenced by:  signsvfn  29791
  Copyright terms: Public domain W3C validator