![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > signswlid | Structured version Visualization version GIF version |
Description: The zero-skipping operation keeps nonzeros. (Contributed by Thierry Arnoux, 12-Oct-2018.) |
Ref | Expression |
---|---|
signsw.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
signsw.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
Ref | Expression |
---|---|
signswlid | ⊢ (((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 ≠ 0) → (𝑋 ⨣ 𝑌) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | signsw.p | . . . 4 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
2 | 1 | signspval 30757 | . . 3 ⊢ ((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → (𝑋 ⨣ 𝑌) = if(𝑌 = 0, 𝑋, 𝑌)) |
3 | 2 | adantr 480 | . 2 ⊢ (((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 ≠ 0) → (𝑋 ⨣ 𝑌) = if(𝑌 = 0, 𝑋, 𝑌)) |
4 | simpr 476 | . . . 4 ⊢ (((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 ≠ 0) → 𝑌 ≠ 0) | |
5 | 4 | neneqd 2828 | . . 3 ⊢ (((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 ≠ 0) → ¬ 𝑌 = 0) |
6 | 5 | iffalsed 4130 | . 2 ⊢ (((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 ≠ 0) → if(𝑌 = 0, 𝑋, 𝑌) = 𝑌) |
7 | 3, 6 | eqtrd 2685 | 1 ⊢ (((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 ≠ 0) → (𝑋 ⨣ 𝑌) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ifcif 4119 {cpr 4212 {ctp 4214 〈cop 4216 ‘cfv 5926 (class class class)co 6690 ↦ cmpt2 6692 0cc0 9974 1c1 9975 -cneg 10305 ndxcnx 15901 Basecbs 15904 +gcplusg 15988 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 |
This theorem is referenced by: signsvtn0 30775 |
Copyright terms: Public domain | W3C validator |