Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signswn0 Structured version   Visualization version   GIF version

Theorem signswn0 31832
Description: The zero-skipping operation propagages nonzeros. (Contributed by Thierry Arnoux, 11-Oct-2018.)
Hypotheses
Ref Expression
signsw.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsw.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
Assertion
Ref Expression
signswn0 (((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑋 ≠ 0) → (𝑋 𝑌) ≠ 0)
Distinct variable groups:   𝑎,𝑏,𝑋   𝑌,𝑎,𝑏
Allowed substitution hints:   (𝑎,𝑏)   𝑊(𝑎,𝑏)

Proof of Theorem signswn0
StepHypRef Expression
1 signsw.p . . . 4 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
21signspval 31824 . . 3 ((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → (𝑋 𝑌) = if(𝑌 = 0, 𝑋, 𝑌))
32adantr 483 . 2 (((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑋 ≠ 0) → (𝑋 𝑌) = if(𝑌 = 0, 𝑋, 𝑌))
4 neeq1 3080 . . 3 (𝑋 = if(𝑌 = 0, 𝑋, 𝑌) → (𝑋 ≠ 0 ↔ if(𝑌 = 0, 𝑋, 𝑌) ≠ 0))
5 neeq1 3080 . . 3 (𝑌 = if(𝑌 = 0, 𝑋, 𝑌) → (𝑌 ≠ 0 ↔ if(𝑌 = 0, 𝑋, 𝑌) ≠ 0))
6 simplr 767 . . 3 ((((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑋 ≠ 0) ∧ 𝑌 = 0) → 𝑋 ≠ 0)
7 simpr 487 . . . 4 ((((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑋 ≠ 0) ∧ ¬ 𝑌 = 0) → ¬ 𝑌 = 0)
87neqned 3025 . . 3 ((((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑋 ≠ 0) ∧ ¬ 𝑌 = 0) → 𝑌 ≠ 0)
94, 5, 6, 8ifbothda 4506 . 2 (((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑋 ≠ 0) → if(𝑌 = 0, 𝑋, 𝑌) ≠ 0)
103, 9eqnetrd 3085 1 (((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑋 ≠ 0) → (𝑋 𝑌) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  ifcif 4469  {cpr 4571  {ctp 4573  cop 4575  cfv 6357  (class class class)co 7158  cmpo 7160  0cc0 10539  1c1 10540  -cneg 10873  ndxcnx 16482  Basecbs 16485  +gcplusg 16567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163
This theorem is referenced by:  signstfvneq0  31844
  Copyright terms: Public domain W3C validator