MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  siii Structured version   Visualization version   GIF version

Theorem siii 27578
Description: Inference from sii 27579. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
siii.1 𝑋 = (BaseSet‘𝑈)
siii.6 𝑁 = (normCV𝑈)
siii.7 𝑃 = (·𝑖OLD𝑈)
siii.9 𝑈 ∈ CPreHilOLD
siii.a 𝐴𝑋
siii.b 𝐵𝑋
Assertion
Ref Expression
siii (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁𝐴) · (𝑁𝐵))

Proof of Theorem siii
StepHypRef Expression
1 oveq2 6618 . . . . 5 (𝐵 = (0vec𝑈) → (𝐴𝑃𝐵) = (𝐴𝑃(0vec𝑈)))
2 siii.9 . . . . . . 7 𝑈 ∈ CPreHilOLD
32phnvi 27541 . . . . . 6 𝑈 ∈ NrmCVec
4 siii.a . . . . . 6 𝐴𝑋
5 siii.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
6 eqid 2621 . . . . . . 7 (0vec𝑈) = (0vec𝑈)
7 siii.7 . . . . . . 7 𝑃 = (·𝑖OLD𝑈)
85, 6, 7dip0r 27442 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃(0vec𝑈)) = 0)
93, 4, 8mp2an 707 . . . . 5 (𝐴𝑃(0vec𝑈)) = 0
101, 9syl6eq 2671 . . . 4 (𝐵 = (0vec𝑈) → (𝐴𝑃𝐵) = 0)
1110abs00bd 13973 . . 3 (𝐵 = (0vec𝑈) → (abs‘(𝐴𝑃𝐵)) = 0)
12 siii.6 . . . . . 6 𝑁 = (normCV𝑈)
135, 12nvge0 27398 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 ≤ (𝑁𝐴))
143, 4, 13mp2an 707 . . . 4 0 ≤ (𝑁𝐴)
15 siii.b . . . . 5 𝐵𝑋
165, 12nvge0 27398 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → 0 ≤ (𝑁𝐵))
173, 15, 16mp2an 707 . . . 4 0 ≤ (𝑁𝐵)
185, 12, 3, 4nvcli 27387 . . . . 5 (𝑁𝐴) ∈ ℝ
195, 12, 3, 15nvcli 27387 . . . . 5 (𝑁𝐵) ∈ ℝ
2018, 19mulge0i 10527 . . . 4 ((0 ≤ (𝑁𝐴) ∧ 0 ≤ (𝑁𝐵)) → 0 ≤ ((𝑁𝐴) · (𝑁𝐵)))
2114, 17, 20mp2an 707 . . 3 0 ≤ ((𝑁𝐴) · (𝑁𝐵))
2211, 21syl6eqbr 4657 . 2 (𝐵 = (0vec𝑈) → (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁𝐴) · (𝑁𝐵)))
2319recni 10004 . . . . . . . . . . 11 (𝑁𝐵) ∈ ℂ
2423sqeq0i 12893 . . . . . . . . . 10 (((𝑁𝐵)↑2) = 0 ↔ (𝑁𝐵) = 0)
255, 6, 12nvz 27394 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((𝑁𝐵) = 0 ↔ 𝐵 = (0vec𝑈)))
263, 15, 25mp2an 707 . . . . . . . . . 10 ((𝑁𝐵) = 0 ↔ 𝐵 = (0vec𝑈))
2724, 26bitri 264 . . . . . . . . 9 (((𝑁𝐵)↑2) = 0 ↔ 𝐵 = (0vec𝑈))
2827necon3bii 2842 . . . . . . . 8 (((𝑁𝐵)↑2) ≠ 0 ↔ 𝐵 ≠ (0vec𝑈))
295, 7dipcl 27437 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝑃𝐴) ∈ ℂ)
303, 15, 4, 29mp3an 1421 . . . . . . . . 9 (𝐵𝑃𝐴) ∈ ℂ
3119resqcli 12897 . . . . . . . . . 10 ((𝑁𝐵)↑2) ∈ ℝ
3231recni 10004 . . . . . . . . 9 ((𝑁𝐵)↑2) ∈ ℂ
3330, 32divcan1zi 10713 . . . . . . . 8 (((𝑁𝐵)↑2) ≠ 0 → (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)) = (𝐵𝑃𝐴))
3428, 33sylbir 225 . . . . . . 7 (𝐵 ≠ (0vec𝑈) → (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)) = (𝐵𝑃𝐴))
355, 7dipcj 27439 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘(𝐴𝑃𝐵)) = (𝐵𝑃𝐴))
363, 4, 15, 35mp3an 1421 . . . . . . 7 (∗‘(𝐴𝑃𝐵)) = (𝐵𝑃𝐴)
3734, 36syl6eqr 2673 . . . . . 6 (𝐵 ≠ (0vec𝑈) → (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)) = (∗‘(𝐴𝑃𝐵)))
3837oveq2d 6626 . . . . 5 (𝐵 ≠ (0vec𝑈) → ((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2))) = ((𝐴𝑃𝐵) · (∗‘(𝐴𝑃𝐵))))
3938fveq2d 6157 . . . 4 (𝐵 ≠ (0vec𝑈) → (√‘((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)))) = (√‘((𝐴𝑃𝐵) · (∗‘(𝐴𝑃𝐵)))))
405, 7dipcl 27437 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
413, 4, 15, 40mp3an 1421 . . . . 5 (𝐴𝑃𝐵) ∈ ℂ
42 absval 13920 . . . . 5 ((𝐴𝑃𝐵) ∈ ℂ → (abs‘(𝐴𝑃𝐵)) = (√‘((𝐴𝑃𝐵) · (∗‘(𝐴𝑃𝐵)))))
4341, 42ax-mp 5 . . . 4 (abs‘(𝐴𝑃𝐵)) = (√‘((𝐴𝑃𝐵) · (∗‘(𝐴𝑃𝐵))))
4439, 43syl6reqr 2674 . . 3 (𝐵 ≠ (0vec𝑈) → (abs‘(𝐴𝑃𝐵)) = (√‘((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)))))
4534eqcomd 2627 . . . 4 (𝐵 ≠ (0vec𝑈) → (𝐵𝑃𝐴) = (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)))
4630, 32divclzi 10712 . . . . . 6 (((𝑁𝐵)↑2) ≠ 0 → ((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) ∈ ℂ)
4728, 46sylbir 225 . . . . 5 (𝐵 ≠ (0vec𝑈) → ((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) ∈ ℂ)
485, 7ipipcj 27440 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝑃𝐵) · (𝐵𝑃𝐴)) = ((abs‘(𝐴𝑃𝐵))↑2))
493, 4, 15, 48mp3an 1421 . . . . . . . . 9 ((𝐴𝑃𝐵) · (𝐵𝑃𝐴)) = ((abs‘(𝐴𝑃𝐵))↑2)
5041, 30, 49mulcomli 9999 . . . . . . . 8 ((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) = ((abs‘(𝐴𝑃𝐵))↑2)
5150oveq1i 6620 . . . . . . 7 (((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) / ((𝑁𝐵)↑2)) = (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁𝐵)↑2))
52 div23 10656 . . . . . . . . . 10 (((𝐵𝑃𝐴) ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ ∧ (((𝑁𝐵)↑2) ∈ ℂ ∧ ((𝑁𝐵)↑2) ≠ 0)) → (((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) / ((𝑁𝐵)↑2)) = (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)))
5330, 41, 52mp3an12 1411 . . . . . . . . 9 ((((𝑁𝐵)↑2) ∈ ℂ ∧ ((𝑁𝐵)↑2) ≠ 0) → (((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) / ((𝑁𝐵)↑2)) = (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)))
5432, 53mpan 705 . . . . . . . 8 (((𝑁𝐵)↑2) ≠ 0 → (((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) / ((𝑁𝐵)↑2)) = (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)))
5528, 54sylbir 225 . . . . . . 7 (𝐵 ≠ (0vec𝑈) → (((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) / ((𝑁𝐵)↑2)) = (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)))
5651, 55syl5reqr 2670 . . . . . 6 (𝐵 ≠ (0vec𝑈) → (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)) = (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁𝐵)↑2)))
5741abscli 14076 . . . . . . . . 9 (abs‘(𝐴𝑃𝐵)) ∈ ℝ
5857resqcli 12897 . . . . . . . 8 ((abs‘(𝐴𝑃𝐵))↑2) ∈ ℝ
5958, 31redivclzi 10743 . . . . . . 7 (((𝑁𝐵)↑2) ≠ 0 → (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁𝐵)↑2)) ∈ ℝ)
6028, 59sylbir 225 . . . . . 6 (𝐵 ≠ (0vec𝑈) → (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁𝐵)↑2)) ∈ ℝ)
6156, 60eqeltrd 2698 . . . . 5 (𝐵 ≠ (0vec𝑈) → (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)) ∈ ℝ)
6226necon3bii 2842 . . . . . . . 8 ((𝑁𝐵) ≠ 0 ↔ 𝐵 ≠ (0vec𝑈))
6319sqgt0i 12898 . . . . . . . 8 ((𝑁𝐵) ≠ 0 → 0 < ((𝑁𝐵)↑2))
6462, 63sylbir 225 . . . . . . 7 (𝐵 ≠ (0vec𝑈) → 0 < ((𝑁𝐵)↑2))
6557sqge0i 12899 . . . . . . . 8 0 ≤ ((abs‘(𝐴𝑃𝐵))↑2)
66 divge0 10844 . . . . . . . 8 (((((abs‘(𝐴𝑃𝐵))↑2) ∈ ℝ ∧ 0 ≤ ((abs‘(𝐴𝑃𝐵))↑2)) ∧ (((𝑁𝐵)↑2) ∈ ℝ ∧ 0 < ((𝑁𝐵)↑2))) → 0 ≤ (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁𝐵)↑2)))
6758, 65, 66mpanl12 717 . . . . . . 7 ((((𝑁𝐵)↑2) ∈ ℝ ∧ 0 < ((𝑁𝐵)↑2)) → 0 ≤ (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁𝐵)↑2)))
6831, 64, 67sylancr 694 . . . . . 6 (𝐵 ≠ (0vec𝑈) → 0 ≤ (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁𝐵)↑2)))
6968, 56breqtrrd 4646 . . . . 5 (𝐵 ≠ (0vec𝑈) → 0 ≤ (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)))
70 eqid 2621 . . . . . 6 ( −𝑣𝑈) = ( −𝑣𝑈)
71 eqid 2621 . . . . . 6 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
725, 12, 7, 2, 4, 15, 70, 71siilem2 27577 . . . . 5 ((((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) ∈ ℂ ∧ (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵))) → ((𝐵𝑃𝐴) = (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵))))
7347, 61, 69, 72syl3anc 1323 . . . 4 (𝐵 ≠ (0vec𝑈) → ((𝐵𝑃𝐴) = (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵))))
7445, 73mpd 15 . . 3 (𝐵 ≠ (0vec𝑈) → (√‘((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵)))
7544, 74eqbrtrd 4640 . 2 (𝐵 ≠ (0vec𝑈) → (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁𝐴) · (𝑁𝐵)))
7622, 75pm2.61ine 2873 1 (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁𝐴) · (𝑁𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4618  cfv 5852  (class class class)co 6610  cc 9886  cr 9887  0cc0 9888   · cmul 9893   < clt 10026  cle 10027   / cdiv 10636  2c2 11022  cexp 12808  ccj 13778  csqrt 13915  abscabs 13916  NrmCVeccnv 27309  BaseSetcba 27311   ·𝑠OLD cns 27312  0veccn0v 27313  𝑣 cnsb 27314  normCVcnmcv 27315  ·𝑖OLDcdip 27425  CPreHilOLDccphlo 27537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-fi 8269  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-ioo 12129  df-icc 12132  df-fz 12277  df-fzo 12415  df-seq 12750  df-exp 12809  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-clim 14161  df-sum 14359  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-sca 15889  df-vsca 15890  df-ip 15891  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-hom 15898  df-cco 15899  df-rest 16015  df-topn 16016  df-0g 16034  df-gsum 16035  df-topgen 16036  df-pt 16037  df-prds 16040  df-xrs 16094  df-qtop 16099  df-imas 16100  df-xps 16102  df-mre 16178  df-mrc 16179  df-acs 16181  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-mulg 17473  df-cntz 17682  df-cmn 18127  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-cnfld 19679  df-top 20631  df-topon 20648  df-topsp 20661  df-bases 20674  df-cld 20746  df-ntr 20747  df-cls 20748  df-cn 20954  df-cnp 20955  df-t1 21041  df-haus 21042  df-tx 21288  df-hmeo 21481  df-xms 22048  df-ms 22049  df-tms 22050  df-grpo 27217  df-gid 27218  df-ginv 27219  df-gdiv 27220  df-ablo 27269  df-vc 27284  df-nv 27317  df-va 27320  df-ba 27321  df-sm 27322  df-0v 27323  df-vs 27324  df-nmcv 27325  df-ims 27326  df-dip 27426  df-ph 27538
This theorem is referenced by:  sii  27579  bcsiHIL  27907
  Copyright terms: Public domain W3C validator