MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  siilem1 Structured version   Visualization version   GIF version

Theorem siilem1 28630
Description: Lemma for sii 28633. (Contributed by NM, 23-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
siii.1 𝑋 = (BaseSet‘𝑈)
siii.6 𝑁 = (normCV𝑈)
siii.7 𝑃 = (·𝑖OLD𝑈)
siii.9 𝑈 ∈ CPreHilOLD
siii.a 𝐴𝑋
siii.b 𝐵𝑋
sii1.3 𝑀 = ( −𝑣𝑈)
sii1.4 𝑆 = ( ·𝑠OLD𝑈)
sii1.c 𝐶 ∈ ℂ
sii1.r (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ
sii1.z 0 ≤ (𝐶 · (𝐴𝑃𝐵))
Assertion
Ref Expression
siilem1 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵)))

Proof of Theorem siilem1
StepHypRef Expression
1 siii.1 . . . . . . . . . 10 𝑋 = (BaseSet‘𝑈)
2 siii.6 . . . . . . . . . 10 𝑁 = (normCV𝑈)
3 siii.9 . . . . . . . . . . 11 𝑈 ∈ CPreHilOLD
43phnvi 28595 . . . . . . . . . 10 𝑈 ∈ NrmCVec
5 siii.a . . . . . . . . . . 11 𝐴𝑋
6 sii1.c . . . . . . . . . . . . 13 𝐶 ∈ ℂ
76cjcli 14530 . . . . . . . . . . . 12 (∗‘𝐶) ∈ ℂ
8 siii.b . . . . . . . . . . . 12 𝐵𝑋
9 sii1.4 . . . . . . . . . . . . 13 𝑆 = ( ·𝑠OLD𝑈)
101, 9nvscl 28405 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (∗‘𝐶) ∈ ℂ ∧ 𝐵𝑋) → ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)
114, 7, 8, 10mp3an 1457 . . . . . . . . . . 11 ((∗‘𝐶)𝑆𝐵) ∈ 𝑋
12 sii1.3 . . . . . . . . . . . 12 𝑀 = ( −𝑣𝑈)
131, 12nvmcl 28425 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋) → (𝐴𝑀((∗‘𝐶)𝑆𝐵)) ∈ 𝑋)
144, 5, 11, 13mp3an 1457 . . . . . . . . . 10 (𝐴𝑀((∗‘𝐶)𝑆𝐵)) ∈ 𝑋
151, 2, 4, 14nvcli 28441 . . . . . . . . 9 (𝑁‘(𝐴𝑀((∗‘𝐶)𝑆𝐵))) ∈ ℝ
1615sqge0i 13554 . . . . . . . 8 0 ≤ ((𝑁‘(𝐴𝑀((∗‘𝐶)𝑆𝐵)))↑2)
1714, 5, 113pm3.2i 1335 . . . . . . . . . 10 ((𝐴𝑀((∗‘𝐶)𝑆𝐵)) ∈ 𝑋𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)
18 siii.7 . . . . . . . . . . 11 𝑃 = (·𝑖OLD𝑈)
191, 12, 18dipsubdi 28628 . . . . . . . . . 10 ((𝑈 ∈ CPreHilOLD ∧ ((𝐴𝑀((∗‘𝐶)𝑆𝐵)) ∈ 𝑋𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)) → ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃(𝐴𝑀((∗‘𝐶)𝑆𝐵))) = (((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) − ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵))))
203, 17, 19mp2an 690 . . . . . . . . 9 ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃(𝐴𝑀((∗‘𝐶)𝑆𝐵))) = (((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) − ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵)))
211, 2, 18ipidsq 28489 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀((∗‘𝐶)𝑆𝐵)) ∈ 𝑋) → ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃(𝐴𝑀((∗‘𝐶)𝑆𝐵))) = ((𝑁‘(𝐴𝑀((∗‘𝐶)𝑆𝐵)))↑2))
224, 14, 21mp2an 690 . . . . . . . . 9 ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃(𝐴𝑀((∗‘𝐶)𝑆𝐵))) = ((𝑁‘(𝐴𝑀((∗‘𝐶)𝑆𝐵)))↑2)
237, 8, 113pm3.2i 1335 . . . . . . . . . . . . . . 15 ((∗‘𝐶) ∈ ℂ ∧ 𝐵𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)
241, 9, 18dipass 28624 . . . . . . . . . . . . . . 15 ((𝑈 ∈ CPreHilOLD ∧ ((∗‘𝐶) ∈ ℂ ∧ 𝐵𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)) → (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)) = ((∗‘𝐶) · (𝐵𝑃((∗‘𝐶)𝑆𝐵))))
253, 23, 24mp2an 690 . . . . . . . . . . . . . 14 (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)) = ((∗‘𝐶) · (𝐵𝑃((∗‘𝐶)𝑆𝐵)))
268, 6, 83pm3.2i 1335 . . . . . . . . . . . . . . . . 17 (𝐵𝑋𝐶 ∈ ℂ ∧ 𝐵𝑋)
271, 9, 18dipassr2 28626 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ CPreHilOLD ∧ (𝐵𝑋𝐶 ∈ ℂ ∧ 𝐵𝑋)) → (𝐵𝑃((∗‘𝐶)𝑆𝐵)) = (𝐶 · (𝐵𝑃𝐵)))
283, 26, 27mp2an 690 . . . . . . . . . . . . . . . 16 (𝐵𝑃((∗‘𝐶)𝑆𝐵)) = (𝐶 · (𝐵𝑃𝐵))
291, 2, 18ipidsq 28489 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝐵𝑃𝐵) = ((𝑁𝐵)↑2))
304, 8, 29mp2an 690 . . . . . . . . . . . . . . . . 17 (𝐵𝑃𝐵) = ((𝑁𝐵)↑2)
3130oveq2i 7169 . . . . . . . . . . . . . . . 16 (𝐶 · (𝐵𝑃𝐵)) = (𝐶 · ((𝑁𝐵)↑2))
3228, 31eqtri 2846 . . . . . . . . . . . . . . 15 (𝐵𝑃((∗‘𝐶)𝑆𝐵)) = (𝐶 · ((𝑁𝐵)↑2))
3332oveq2i 7169 . . . . . . . . . . . . . 14 ((∗‘𝐶) · (𝐵𝑃((∗‘𝐶)𝑆𝐵))) = ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2)))
3425, 33eqtri 2846 . . . . . . . . . . . . 13 (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)) = ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2)))
3534oveq2i 7169 . . . . . . . . . . . 12 ((𝐶 · (𝐴𝑃𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵))) = ((𝐶 · (𝐴𝑃𝐵)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))))
3635oveq2i 7169 . . . . . . . . . . 11 ((((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴))) − ((𝐶 · (𝐴𝑃𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)))) = ((((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴))) − ((𝐶 · (𝐴𝑃𝐵)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2)))))
371, 2, 4, 5nvcli 28441 . . . . . . . . . . . . . 14 (𝑁𝐴) ∈ ℝ
3837recni 10657 . . . . . . . . . . . . 13 (𝑁𝐴) ∈ ℂ
3938sqcli 13547 . . . . . . . . . . . 12 ((𝑁𝐴)↑2) ∈ ℂ
401, 18dipcl 28491 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝑃𝐴) ∈ ℂ)
414, 8, 5, 40mp3an 1457 . . . . . . . . . . . . 13 (𝐵𝑃𝐴) ∈ ℂ
427, 41mulcli 10650 . . . . . . . . . . . 12 ((∗‘𝐶) · (𝐵𝑃𝐴)) ∈ ℂ
43 sii1.r . . . . . . . . . . . . 13 (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ
4443recni 10657 . . . . . . . . . . . 12 (𝐶 · (𝐴𝑃𝐵)) ∈ ℂ
451, 2, 4, 8nvcli 28441 . . . . . . . . . . . . . . . 16 (𝑁𝐵) ∈ ℝ
4645recni 10657 . . . . . . . . . . . . . . 15 (𝑁𝐵) ∈ ℂ
4746sqcli 13547 . . . . . . . . . . . . . 14 ((𝑁𝐵)↑2) ∈ ℂ
486, 47mulcli 10650 . . . . . . . . . . . . 13 (𝐶 · ((𝑁𝐵)↑2)) ∈ ℂ
497, 48mulcli 10650 . . . . . . . . . . . 12 ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))) ∈ ℂ
50 sub4 10933 . . . . . . . . . . . 12 (((((𝑁𝐴)↑2) ∈ ℂ ∧ ((∗‘𝐶) · (𝐵𝑃𝐴)) ∈ ℂ) ∧ ((𝐶 · (𝐴𝑃𝐵)) ∈ ℂ ∧ ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))) ∈ ℂ)) → ((((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴))) − ((𝐶 · (𝐴𝑃𝐵)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))))) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − (((∗‘𝐶) · (𝐵𝑃𝐴)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))))))
5139, 42, 44, 49, 50mp4an 691 . . . . . . . . . . 11 ((((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴))) − ((𝐶 · (𝐴𝑃𝐵)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))))) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − (((∗‘𝐶) · (𝐵𝑃𝐴)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2)))))
5236, 51eqtri 2846 . . . . . . . . . 10 ((((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴))) − ((𝐶 · (𝐴𝑃𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)))) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − (((∗‘𝐶) · (𝐵𝑃𝐴)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2)))))
535, 11, 53pm3.2i 1335 . . . . . . . . . . . . 13 (𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋𝐴𝑋)
541, 12, 18dipsubdir 28627 . . . . . . . . . . . . 13 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋𝐴𝑋)) → ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) = ((𝐴𝑃𝐴) − (((∗‘𝐶)𝑆𝐵)𝑃𝐴)))
553, 53, 54mp2an 690 . . . . . . . . . . . 12 ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) = ((𝐴𝑃𝐴) − (((∗‘𝐶)𝑆𝐵)𝑃𝐴))
561, 2, 18ipidsq 28489 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝐴) = ((𝑁𝐴)↑2))
574, 5, 56mp2an 690 . . . . . . . . . . . . 13 (𝐴𝑃𝐴) = ((𝑁𝐴)↑2)
587, 8, 53pm3.2i 1335 . . . . . . . . . . . . . 14 ((∗‘𝐶) ∈ ℂ ∧ 𝐵𝑋𝐴𝑋)
591, 9, 18dipass 28624 . . . . . . . . . . . . . 14 ((𝑈 ∈ CPreHilOLD ∧ ((∗‘𝐶) ∈ ℂ ∧ 𝐵𝑋𝐴𝑋)) → (((∗‘𝐶)𝑆𝐵)𝑃𝐴) = ((∗‘𝐶) · (𝐵𝑃𝐴)))
603, 58, 59mp2an 690 . . . . . . . . . . . . 13 (((∗‘𝐶)𝑆𝐵)𝑃𝐴) = ((∗‘𝐶) · (𝐵𝑃𝐴))
6157, 60oveq12i 7170 . . . . . . . . . . . 12 ((𝐴𝑃𝐴) − (((∗‘𝐶)𝑆𝐵)𝑃𝐴)) = (((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴)))
6255, 61eqtri 2846 . . . . . . . . . . 11 ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) = (((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴)))
635, 11, 113pm3.2i 1335 . . . . . . . . . . . . 13 (𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)
641, 12, 18dipsubdir 28627 . . . . . . . . . . . . 13 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)) → ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵)) = ((𝐴𝑃((∗‘𝐶)𝑆𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵))))
653, 63, 64mp2an 690 . . . . . . . . . . . 12 ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵)) = ((𝐴𝑃((∗‘𝐶)𝑆𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)))
665, 6, 83pm3.2i 1335 . . . . . . . . . . . . . 14 (𝐴𝑋𝐶 ∈ ℂ ∧ 𝐵𝑋)
671, 9, 18dipassr2 28626 . . . . . . . . . . . . . 14 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐶 ∈ ℂ ∧ 𝐵𝑋)) → (𝐴𝑃((∗‘𝐶)𝑆𝐵)) = (𝐶 · (𝐴𝑃𝐵)))
683, 66, 67mp2an 690 . . . . . . . . . . . . 13 (𝐴𝑃((∗‘𝐶)𝑆𝐵)) = (𝐶 · (𝐴𝑃𝐵))
6968oveq1i 7168 . . . . . . . . . . . 12 ((𝐴𝑃((∗‘𝐶)𝑆𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵))) = ((𝐶 · (𝐴𝑃𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)))
7065, 69eqtri 2846 . . . . . . . . . . 11 ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵)) = ((𝐶 · (𝐴𝑃𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)))
7162, 70oveq12i 7170 . . . . . . . . . 10 (((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) − ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵))) = ((((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴))) − ((𝐶 · (𝐴𝑃𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵))))
727, 41, 48subdii 11091 . . . . . . . . . . 11 ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))) = (((∗‘𝐶) · (𝐵𝑃𝐴)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))))
7372oveq2i 7169 . . . . . . . . . 10 ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2))))) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − (((∗‘𝐶) · (𝐵𝑃𝐴)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2)))))
7452, 71, 733eqtr4i 2856 . . . . . . . . 9 (((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) − ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵))) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))))
7520, 22, 743eqtr3i 2854 . . . . . . . 8 ((𝑁‘(𝐴𝑀((∗‘𝐶)𝑆𝐵)))↑2) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))))
7616, 75breqtri 5093 . . . . . . 7 0 ≤ ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))))
7741, 48subeq0i 10968 . . . . . . . . . 10 (((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2))) = 0 ↔ (𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)))
78 oveq2 7166 . . . . . . . . . . 11 (((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2))) = 0 → ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))) = ((∗‘𝐶) · 0))
797mul01i 10832 . . . . . . . . . . 11 ((∗‘𝐶) · 0) = 0
8078, 79syl6eq 2874 . . . . . . . . . 10 (((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2))) = 0 → ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))) = 0)
8177, 80sylbir 237 . . . . . . . . 9 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))) = 0)
8281oveq2d 7174 . . . . . . . 8 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2))))) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − 0))
8337resqcli 13552 . . . . . . . . . . 11 ((𝑁𝐴)↑2) ∈ ℝ
8483recni 10657 . . . . . . . . . 10 ((𝑁𝐴)↑2) ∈ ℂ
8584, 44subcli 10964 . . . . . . . . 9 (((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) ∈ ℂ
8685subid1i 10960 . . . . . . . 8 ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − 0) = (((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵)))
8782, 86syl6eq 2874 . . . . . . 7 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2))))) = (((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))))
8876, 87breqtrid 5105 . . . . . 6 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → 0 ≤ (((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))))
8983, 43subge0i 11195 . . . . . 6 (0 ≤ (((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) ↔ (𝐶 · (𝐴𝑃𝐵)) ≤ ((𝑁𝐴)↑2))
9088, 89sylib 220 . . . . 5 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (𝐶 · (𝐴𝑃𝐵)) ≤ ((𝑁𝐴)↑2))
9145resqcli 13552 . . . . . . . 8 ((𝑁𝐵)↑2) ∈ ℝ
9245sqge0i 13554 . . . . . . . 8 0 ≤ ((𝑁𝐵)↑2)
9391, 92pm3.2i 473 . . . . . . 7 (((𝑁𝐵)↑2) ∈ ℝ ∧ 0 ≤ ((𝑁𝐵)↑2))
9443, 83, 933pm3.2i 1335 . . . . . 6 ((𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ ((𝑁𝐴)↑2) ∈ ℝ ∧ (((𝑁𝐵)↑2) ∈ ℝ ∧ 0 ≤ ((𝑁𝐵)↑2)))
95 lemul1a 11496 . . . . . 6 ((((𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ ((𝑁𝐴)↑2) ∈ ℝ ∧ (((𝑁𝐵)↑2) ∈ ℝ ∧ 0 ≤ ((𝑁𝐵)↑2))) ∧ (𝐶 · (𝐴𝑃𝐵)) ≤ ((𝑁𝐴)↑2)) → ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ≤ (((𝑁𝐴)↑2) · ((𝑁𝐵)↑2)))
9694, 95mpan 688 . . . . 5 ((𝐶 · (𝐴𝑃𝐵)) ≤ ((𝑁𝐴)↑2) → ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ≤ (((𝑁𝐴)↑2) · ((𝑁𝐵)↑2)))
9790, 96syl 17 . . . 4 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ≤ (((𝑁𝐴)↑2) · ((𝑁𝐵)↑2)))
9838, 46sqmuli 13550 . . . 4 (((𝑁𝐴) · (𝑁𝐵))↑2) = (((𝑁𝐴)↑2) · ((𝑁𝐵)↑2))
9997, 98breqtrrdi 5110 . . 3 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ≤ (((𝑁𝐴) · (𝑁𝐵))↑2))
100 sii1.z . . . . 5 0 ≤ (𝐶 · (𝐴𝑃𝐵))
10143, 91mulge0i 11189 . . . . 5 ((0 ≤ (𝐶 · (𝐴𝑃𝐵)) ∧ 0 ≤ ((𝑁𝐵)↑2)) → 0 ≤ ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)))
102100, 92, 101mp2an 690 . . . 4 0 ≤ ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2))
10337, 45remulcli 10659 . . . . 5 ((𝑁𝐴) · (𝑁𝐵)) ∈ ℝ
104103sqge0i 13554 . . . 4 0 ≤ (((𝑁𝐴) · (𝑁𝐵))↑2)
10543, 91remulcli 10659 . . . . 5 ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ∈ ℝ
106103resqcli 13552 . . . . 5 (((𝑁𝐴) · (𝑁𝐵))↑2) ∈ ℝ
107105, 106sqrtlei 14750 . . . 4 ((0 ≤ ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ∧ 0 ≤ (((𝑁𝐴) · (𝑁𝐵))↑2)) → (((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ≤ (((𝑁𝐴) · (𝑁𝐵))↑2) ↔ (√‘((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2))) ≤ (√‘(((𝑁𝐴) · (𝑁𝐵))↑2))))
108102, 104, 107mp2an 690 . . 3 (((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ≤ (((𝑁𝐴) · (𝑁𝐵))↑2) ↔ (√‘((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2))) ≤ (√‘(((𝑁𝐴) · (𝑁𝐵))↑2)))
10999, 108sylib 220 . 2 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (√‘((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2))) ≤ (√‘(((𝑁𝐴) · (𝑁𝐵))↑2)))
1101, 18dipcl 28491 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
1114, 5, 8, 110mp3an 1457 . . . . . 6 (𝐴𝑃𝐵) ∈ ℂ
1126, 111mulcomi 10651 . . . . 5 (𝐶 · (𝐴𝑃𝐵)) = ((𝐴𝑃𝐵) · 𝐶)
113112oveq1i 7168 . . . 4 ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) = (((𝐴𝑃𝐵) · 𝐶) · ((𝑁𝐵)↑2))
11491recni 10657 . . . . 5 ((𝑁𝐵)↑2) ∈ ℂ
115111, 6, 114mulassi 10654 . . . 4 (((𝐴𝑃𝐵) · 𝐶) · ((𝑁𝐵)↑2)) = ((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))
116113, 115eqtri 2846 . . 3 ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) = ((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))
117116fveq2i 6675 . 2 (√‘((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2))) = (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2))))
1181, 2nvge0 28452 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 ≤ (𝑁𝐴))
1194, 5, 118mp2an 690 . . . 4 0 ≤ (𝑁𝐴)
1201, 2nvge0 28452 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → 0 ≤ (𝑁𝐵))
1214, 8, 120mp2an 690 . . . 4 0 ≤ (𝑁𝐵)
12237, 45mulge0i 11189 . . . 4 ((0 ≤ (𝑁𝐴) ∧ 0 ≤ (𝑁𝐵)) → 0 ≤ ((𝑁𝐴) · (𝑁𝐵)))
123119, 121, 122mp2an 690 . . 3 0 ≤ ((𝑁𝐴) · (𝑁𝐵))
124103sqrtsqi 14736 . . 3 (0 ≤ ((𝑁𝐴) · (𝑁𝐵)) → (√‘(((𝑁𝐴) · (𝑁𝐵))↑2)) = ((𝑁𝐴) · (𝑁𝐵)))
125123, 124ax-mp 5 . 2 (√‘(((𝑁𝐴) · (𝑁𝐵))↑2)) = ((𝑁𝐴) · (𝑁𝐵))
126109, 117, 1253brtr3g 5101 1 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5068  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539   · cmul 10544  cle 10678  cmin 10872  2c2 11695  cexp 13432  ccj 14457  csqrt 14594  NrmCVeccnv 28363  BaseSetcba 28365   ·𝑠OLD cns 28366  𝑣 cnsb 28368  normCVcnmcv 28369  ·𝑖OLDcdip 28479  CPreHilOLDccphlo 28591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-cn 21837  df-cnp 21838  df-t1 21924  df-haus 21925  df-tx 22172  df-hmeo 22365  df-xms 22932  df-ms 22933  df-tms 22934  df-grpo 28272  df-gid 28273  df-ginv 28274  df-gdiv 28275  df-ablo 28324  df-vc 28338  df-nv 28371  df-va 28374  df-ba 28375  df-sm 28376  df-0v 28377  df-vs 28378  df-nmcv 28379  df-ims 28380  df-dip 28480  df-ph 28592
This theorem is referenced by:  siilem2  28631
  Copyright terms: Public domain W3C validator