MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  siilem1 Structured version   Visualization version   GIF version

Theorem siilem1 27576
Description: Lemma for sii 27579. (Contributed by NM, 23-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
siii.1 𝑋 = (BaseSet‘𝑈)
siii.6 𝑁 = (normCV𝑈)
siii.7 𝑃 = (·𝑖OLD𝑈)
siii.9 𝑈 ∈ CPreHilOLD
siii.a 𝐴𝑋
siii.b 𝐵𝑋
sii1.3 𝑀 = ( −𝑣𝑈)
sii1.4 𝑆 = ( ·𝑠OLD𝑈)
sii1.c 𝐶 ∈ ℂ
sii1.r (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ
sii1.z 0 ≤ (𝐶 · (𝐴𝑃𝐵))
Assertion
Ref Expression
siilem1 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵)))

Proof of Theorem siilem1
StepHypRef Expression
1 siii.1 . . . . . . . . . 10 𝑋 = (BaseSet‘𝑈)
2 siii.6 . . . . . . . . . 10 𝑁 = (normCV𝑈)
3 siii.9 . . . . . . . . . . 11 𝑈 ∈ CPreHilOLD
43phnvi 27541 . . . . . . . . . 10 𝑈 ∈ NrmCVec
5 siii.a . . . . . . . . . . 11 𝐴𝑋
6 sii1.c . . . . . . . . . . . . 13 𝐶 ∈ ℂ
76cjcli 13851 . . . . . . . . . . . 12 (∗‘𝐶) ∈ ℂ
8 siii.b . . . . . . . . . . . 12 𝐵𝑋
9 sii1.4 . . . . . . . . . . . . 13 𝑆 = ( ·𝑠OLD𝑈)
101, 9nvscl 27351 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (∗‘𝐶) ∈ ℂ ∧ 𝐵𝑋) → ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)
114, 7, 8, 10mp3an 1421 . . . . . . . . . . 11 ((∗‘𝐶)𝑆𝐵) ∈ 𝑋
12 sii1.3 . . . . . . . . . . . 12 𝑀 = ( −𝑣𝑈)
131, 12nvmcl 27371 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋) → (𝐴𝑀((∗‘𝐶)𝑆𝐵)) ∈ 𝑋)
144, 5, 11, 13mp3an 1421 . . . . . . . . . 10 (𝐴𝑀((∗‘𝐶)𝑆𝐵)) ∈ 𝑋
151, 2, 4, 14nvcli 27387 . . . . . . . . 9 (𝑁‘(𝐴𝑀((∗‘𝐶)𝑆𝐵))) ∈ ℝ
1615sqge0i 12899 . . . . . . . 8 0 ≤ ((𝑁‘(𝐴𝑀((∗‘𝐶)𝑆𝐵)))↑2)
1714, 5, 113pm3.2i 1237 . . . . . . . . . 10 ((𝐴𝑀((∗‘𝐶)𝑆𝐵)) ∈ 𝑋𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)
18 siii.7 . . . . . . . . . . 11 𝑃 = (·𝑖OLD𝑈)
191, 12, 18dipsubdi 27574 . . . . . . . . . 10 ((𝑈 ∈ CPreHilOLD ∧ ((𝐴𝑀((∗‘𝐶)𝑆𝐵)) ∈ 𝑋𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)) → ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃(𝐴𝑀((∗‘𝐶)𝑆𝐵))) = (((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) − ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵))))
203, 17, 19mp2an 707 . . . . . . . . 9 ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃(𝐴𝑀((∗‘𝐶)𝑆𝐵))) = (((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) − ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵)))
211, 2, 18ipidsq 27435 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀((∗‘𝐶)𝑆𝐵)) ∈ 𝑋) → ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃(𝐴𝑀((∗‘𝐶)𝑆𝐵))) = ((𝑁‘(𝐴𝑀((∗‘𝐶)𝑆𝐵)))↑2))
224, 14, 21mp2an 707 . . . . . . . . 9 ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃(𝐴𝑀((∗‘𝐶)𝑆𝐵))) = ((𝑁‘(𝐴𝑀((∗‘𝐶)𝑆𝐵)))↑2)
237, 8, 113pm3.2i 1237 . . . . . . . . . . . . . . 15 ((∗‘𝐶) ∈ ℂ ∧ 𝐵𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)
241, 9, 18dipass 27570 . . . . . . . . . . . . . . 15 ((𝑈 ∈ CPreHilOLD ∧ ((∗‘𝐶) ∈ ℂ ∧ 𝐵𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)) → (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)) = ((∗‘𝐶) · (𝐵𝑃((∗‘𝐶)𝑆𝐵))))
253, 23, 24mp2an 707 . . . . . . . . . . . . . 14 (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)) = ((∗‘𝐶) · (𝐵𝑃((∗‘𝐶)𝑆𝐵)))
268, 6, 83pm3.2i 1237 . . . . . . . . . . . . . . . . 17 (𝐵𝑋𝐶 ∈ ℂ ∧ 𝐵𝑋)
271, 9, 18dipassr2 27572 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ CPreHilOLD ∧ (𝐵𝑋𝐶 ∈ ℂ ∧ 𝐵𝑋)) → (𝐵𝑃((∗‘𝐶)𝑆𝐵)) = (𝐶 · (𝐵𝑃𝐵)))
283, 26, 27mp2an 707 . . . . . . . . . . . . . . . 16 (𝐵𝑃((∗‘𝐶)𝑆𝐵)) = (𝐶 · (𝐵𝑃𝐵))
291, 2, 18ipidsq 27435 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝐵𝑃𝐵) = ((𝑁𝐵)↑2))
304, 8, 29mp2an 707 . . . . . . . . . . . . . . . . 17 (𝐵𝑃𝐵) = ((𝑁𝐵)↑2)
3130oveq2i 6621 . . . . . . . . . . . . . . . 16 (𝐶 · (𝐵𝑃𝐵)) = (𝐶 · ((𝑁𝐵)↑2))
3228, 31eqtri 2643 . . . . . . . . . . . . . . 15 (𝐵𝑃((∗‘𝐶)𝑆𝐵)) = (𝐶 · ((𝑁𝐵)↑2))
3332oveq2i 6621 . . . . . . . . . . . . . 14 ((∗‘𝐶) · (𝐵𝑃((∗‘𝐶)𝑆𝐵))) = ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2)))
3425, 33eqtri 2643 . . . . . . . . . . . . 13 (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)) = ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2)))
3534oveq2i 6621 . . . . . . . . . . . 12 ((𝐶 · (𝐴𝑃𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵))) = ((𝐶 · (𝐴𝑃𝐵)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))))
3635oveq2i 6621 . . . . . . . . . . 11 ((((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴))) − ((𝐶 · (𝐴𝑃𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)))) = ((((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴))) − ((𝐶 · (𝐴𝑃𝐵)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2)))))
371, 2, 4, 5nvcli 27387 . . . . . . . . . . . . . 14 (𝑁𝐴) ∈ ℝ
3837recni 10004 . . . . . . . . . . . . 13 (𝑁𝐴) ∈ ℂ
3938sqcli 12892 . . . . . . . . . . . 12 ((𝑁𝐴)↑2) ∈ ℂ
401, 18dipcl 27437 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝑃𝐴) ∈ ℂ)
414, 8, 5, 40mp3an 1421 . . . . . . . . . . . . 13 (𝐵𝑃𝐴) ∈ ℂ
427, 41mulcli 9997 . . . . . . . . . . . 12 ((∗‘𝐶) · (𝐵𝑃𝐴)) ∈ ℂ
43 sii1.r . . . . . . . . . . . . 13 (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ
4443recni 10004 . . . . . . . . . . . 12 (𝐶 · (𝐴𝑃𝐵)) ∈ ℂ
451, 2, 4, 8nvcli 27387 . . . . . . . . . . . . . . . 16 (𝑁𝐵) ∈ ℝ
4645recni 10004 . . . . . . . . . . . . . . 15 (𝑁𝐵) ∈ ℂ
4746sqcli 12892 . . . . . . . . . . . . . 14 ((𝑁𝐵)↑2) ∈ ℂ
486, 47mulcli 9997 . . . . . . . . . . . . 13 (𝐶 · ((𝑁𝐵)↑2)) ∈ ℂ
497, 48mulcli 9997 . . . . . . . . . . . 12 ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))) ∈ ℂ
50 sub4 10278 . . . . . . . . . . . 12 (((((𝑁𝐴)↑2) ∈ ℂ ∧ ((∗‘𝐶) · (𝐵𝑃𝐴)) ∈ ℂ) ∧ ((𝐶 · (𝐴𝑃𝐵)) ∈ ℂ ∧ ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))) ∈ ℂ)) → ((((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴))) − ((𝐶 · (𝐴𝑃𝐵)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))))) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − (((∗‘𝐶) · (𝐵𝑃𝐴)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))))))
5139, 42, 44, 49, 50mp4an 708 . . . . . . . . . . 11 ((((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴))) − ((𝐶 · (𝐴𝑃𝐵)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))))) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − (((∗‘𝐶) · (𝐵𝑃𝐴)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2)))))
5236, 51eqtri 2643 . . . . . . . . . 10 ((((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴))) − ((𝐶 · (𝐴𝑃𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)))) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − (((∗‘𝐶) · (𝐵𝑃𝐴)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2)))))
535, 11, 53pm3.2i 1237 . . . . . . . . . . . . 13 (𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋𝐴𝑋)
541, 12, 18dipsubdir 27573 . . . . . . . . . . . . 13 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋𝐴𝑋)) → ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) = ((𝐴𝑃𝐴) − (((∗‘𝐶)𝑆𝐵)𝑃𝐴)))
553, 53, 54mp2an 707 . . . . . . . . . . . 12 ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) = ((𝐴𝑃𝐴) − (((∗‘𝐶)𝑆𝐵)𝑃𝐴))
561, 2, 18ipidsq 27435 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝐴) = ((𝑁𝐴)↑2))
574, 5, 56mp2an 707 . . . . . . . . . . . . 13 (𝐴𝑃𝐴) = ((𝑁𝐴)↑2)
587, 8, 53pm3.2i 1237 . . . . . . . . . . . . . 14 ((∗‘𝐶) ∈ ℂ ∧ 𝐵𝑋𝐴𝑋)
591, 9, 18dipass 27570 . . . . . . . . . . . . . 14 ((𝑈 ∈ CPreHilOLD ∧ ((∗‘𝐶) ∈ ℂ ∧ 𝐵𝑋𝐴𝑋)) → (((∗‘𝐶)𝑆𝐵)𝑃𝐴) = ((∗‘𝐶) · (𝐵𝑃𝐴)))
603, 58, 59mp2an 707 . . . . . . . . . . . . 13 (((∗‘𝐶)𝑆𝐵)𝑃𝐴) = ((∗‘𝐶) · (𝐵𝑃𝐴))
6157, 60oveq12i 6622 . . . . . . . . . . . 12 ((𝐴𝑃𝐴) − (((∗‘𝐶)𝑆𝐵)𝑃𝐴)) = (((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴)))
6255, 61eqtri 2643 . . . . . . . . . . 11 ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) = (((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴)))
635, 11, 113pm3.2i 1237 . . . . . . . . . . . . 13 (𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)
641, 12, 18dipsubdir 27573 . . . . . . . . . . . . 13 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)) → ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵)) = ((𝐴𝑃((∗‘𝐶)𝑆𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵))))
653, 63, 64mp2an 707 . . . . . . . . . . . 12 ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵)) = ((𝐴𝑃((∗‘𝐶)𝑆𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)))
665, 6, 83pm3.2i 1237 . . . . . . . . . . . . . 14 (𝐴𝑋𝐶 ∈ ℂ ∧ 𝐵𝑋)
671, 9, 18dipassr2 27572 . . . . . . . . . . . . . 14 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐶 ∈ ℂ ∧ 𝐵𝑋)) → (𝐴𝑃((∗‘𝐶)𝑆𝐵)) = (𝐶 · (𝐴𝑃𝐵)))
683, 66, 67mp2an 707 . . . . . . . . . . . . 13 (𝐴𝑃((∗‘𝐶)𝑆𝐵)) = (𝐶 · (𝐴𝑃𝐵))
6968oveq1i 6620 . . . . . . . . . . . 12 ((𝐴𝑃((∗‘𝐶)𝑆𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵))) = ((𝐶 · (𝐴𝑃𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)))
7065, 69eqtri 2643 . . . . . . . . . . 11 ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵)) = ((𝐶 · (𝐴𝑃𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)))
7162, 70oveq12i 6622 . . . . . . . . . 10 (((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) − ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵))) = ((((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴))) − ((𝐶 · (𝐴𝑃𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵))))
727, 41, 48subdii 10431 . . . . . . . . . . 11 ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))) = (((∗‘𝐶) · (𝐵𝑃𝐴)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))))
7372oveq2i 6621 . . . . . . . . . 10 ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2))))) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − (((∗‘𝐶) · (𝐵𝑃𝐴)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2)))))
7452, 71, 733eqtr4i 2653 . . . . . . . . 9 (((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) − ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵))) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))))
7520, 22, 743eqtr3i 2651 . . . . . . . 8 ((𝑁‘(𝐴𝑀((∗‘𝐶)𝑆𝐵)))↑2) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))))
7616, 75breqtri 4643 . . . . . . 7 0 ≤ ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))))
7741, 48subeq0i 10313 . . . . . . . . . 10 (((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2))) = 0 ↔ (𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)))
78 oveq2 6618 . . . . . . . . . . 11 (((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2))) = 0 → ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))) = ((∗‘𝐶) · 0))
797mul01i 10178 . . . . . . . . . . 11 ((∗‘𝐶) · 0) = 0
8078, 79syl6eq 2671 . . . . . . . . . 10 (((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2))) = 0 → ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))) = 0)
8177, 80sylbir 225 . . . . . . . . 9 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))) = 0)
8281oveq2d 6626 . . . . . . . 8 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2))))) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − 0))
8337resqcli 12897 . . . . . . . . . . 11 ((𝑁𝐴)↑2) ∈ ℝ
8483recni 10004 . . . . . . . . . 10 ((𝑁𝐴)↑2) ∈ ℂ
8584, 44subcli 10309 . . . . . . . . 9 (((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) ∈ ℂ
8685subid1i 10305 . . . . . . . 8 ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − 0) = (((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵)))
8782, 86syl6eq 2671 . . . . . . 7 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2))))) = (((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))))
8876, 87syl5breq 4655 . . . . . 6 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → 0 ≤ (((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))))
8983, 43subge0i 10533 . . . . . 6 (0 ≤ (((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) ↔ (𝐶 · (𝐴𝑃𝐵)) ≤ ((𝑁𝐴)↑2))
9088, 89sylib 208 . . . . 5 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (𝐶 · (𝐴𝑃𝐵)) ≤ ((𝑁𝐴)↑2))
9145resqcli 12897 . . . . . . . 8 ((𝑁𝐵)↑2) ∈ ℝ
9245sqge0i 12899 . . . . . . . 8 0 ≤ ((𝑁𝐵)↑2)
9391, 92pm3.2i 471 . . . . . . 7 (((𝑁𝐵)↑2) ∈ ℝ ∧ 0 ≤ ((𝑁𝐵)↑2))
9443, 83, 933pm3.2i 1237 . . . . . 6 ((𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ ((𝑁𝐴)↑2) ∈ ℝ ∧ (((𝑁𝐵)↑2) ∈ ℝ ∧ 0 ≤ ((𝑁𝐵)↑2)))
95 lemul1a 10829 . . . . . 6 ((((𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ ((𝑁𝐴)↑2) ∈ ℝ ∧ (((𝑁𝐵)↑2) ∈ ℝ ∧ 0 ≤ ((𝑁𝐵)↑2))) ∧ (𝐶 · (𝐴𝑃𝐵)) ≤ ((𝑁𝐴)↑2)) → ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ≤ (((𝑁𝐴)↑2) · ((𝑁𝐵)↑2)))
9694, 95mpan 705 . . . . 5 ((𝐶 · (𝐴𝑃𝐵)) ≤ ((𝑁𝐴)↑2) → ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ≤ (((𝑁𝐴)↑2) · ((𝑁𝐵)↑2)))
9790, 96syl 17 . . . 4 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ≤ (((𝑁𝐴)↑2) · ((𝑁𝐵)↑2)))
9838, 46sqmuli 12895 . . . 4 (((𝑁𝐴) · (𝑁𝐵))↑2) = (((𝑁𝐴)↑2) · ((𝑁𝐵)↑2))
9997, 98syl6breqr 4660 . . 3 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ≤ (((𝑁𝐴) · (𝑁𝐵))↑2))
100 sii1.z . . . . 5 0 ≤ (𝐶 · (𝐴𝑃𝐵))
10143, 91mulge0i 10527 . . . . 5 ((0 ≤ (𝐶 · (𝐴𝑃𝐵)) ∧ 0 ≤ ((𝑁𝐵)↑2)) → 0 ≤ ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)))
102100, 92, 101mp2an 707 . . . 4 0 ≤ ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2))
10337, 45remulcli 10006 . . . . 5 ((𝑁𝐴) · (𝑁𝐵)) ∈ ℝ
104103sqge0i 12899 . . . 4 0 ≤ (((𝑁𝐴) · (𝑁𝐵))↑2)
10543, 91remulcli 10006 . . . . 5 ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ∈ ℝ
106103resqcli 12897 . . . . 5 (((𝑁𝐴) · (𝑁𝐵))↑2) ∈ ℝ
107105, 106sqrtlei 14070 . . . 4 ((0 ≤ ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ∧ 0 ≤ (((𝑁𝐴) · (𝑁𝐵))↑2)) → (((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ≤ (((𝑁𝐴) · (𝑁𝐵))↑2) ↔ (√‘((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2))) ≤ (√‘(((𝑁𝐴) · (𝑁𝐵))↑2))))
108102, 104, 107mp2an 707 . . 3 (((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ≤ (((𝑁𝐴) · (𝑁𝐵))↑2) ↔ (√‘((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2))) ≤ (√‘(((𝑁𝐴) · (𝑁𝐵))↑2)))
10999, 108sylib 208 . 2 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (√‘((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2))) ≤ (√‘(((𝑁𝐴) · (𝑁𝐵))↑2)))
1101, 18dipcl 27437 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
1114, 5, 8, 110mp3an 1421 . . . . . 6 (𝐴𝑃𝐵) ∈ ℂ
1126, 111mulcomi 9998 . . . . 5 (𝐶 · (𝐴𝑃𝐵)) = ((𝐴𝑃𝐵) · 𝐶)
113112oveq1i 6620 . . . 4 ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) = (((𝐴𝑃𝐵) · 𝐶) · ((𝑁𝐵)↑2))
11491recni 10004 . . . . 5 ((𝑁𝐵)↑2) ∈ ℂ
115111, 6, 114mulassi 10001 . . . 4 (((𝐴𝑃𝐵) · 𝐶) · ((𝑁𝐵)↑2)) = ((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))
116113, 115eqtri 2643 . . 3 ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) = ((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))
117116fveq2i 6156 . 2 (√‘((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2))) = (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2))))
1181, 2nvge0 27398 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 ≤ (𝑁𝐴))
1194, 5, 118mp2an 707 . . . 4 0 ≤ (𝑁𝐴)
1201, 2nvge0 27398 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → 0 ≤ (𝑁𝐵))
1214, 8, 120mp2an 707 . . . 4 0 ≤ (𝑁𝐵)
12237, 45mulge0i 10527 . . . 4 ((0 ≤ (𝑁𝐴) ∧ 0 ≤ (𝑁𝐵)) → 0 ≤ ((𝑁𝐴) · (𝑁𝐵)))
123119, 121, 122mp2an 707 . . 3 0 ≤ ((𝑁𝐴) · (𝑁𝐵))
124103sqrtsqi 14056 . . 3 (0 ≤ ((𝑁𝐴) · (𝑁𝐵)) → (√‘(((𝑁𝐴) · (𝑁𝐵))↑2)) = ((𝑁𝐴) · (𝑁𝐵)))
125123, 124ax-mp 5 . 2 (√‘(((𝑁𝐴) · (𝑁𝐵))↑2)) = ((𝑁𝐴) · (𝑁𝐵))
126109, 117, 1253brtr3g 4651 1 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987   class class class wbr 4618  cfv 5852  (class class class)co 6610  cc 9886  cr 9887  0cc0 9888   · cmul 9893  cle 10027  cmin 10218  2c2 11022  cexp 12808  ccj 13778  csqrt 13915  NrmCVeccnv 27309  BaseSetcba 27311   ·𝑠OLD cns 27312  𝑣 cnsb 27314  normCVcnmcv 27315  ·𝑖OLDcdip 27425  CPreHilOLDccphlo 27537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-fi 8269  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-ioo 12129  df-icc 12132  df-fz 12277  df-fzo 12415  df-seq 12750  df-exp 12809  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-clim 14161  df-sum 14359  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-sca 15889  df-vsca 15890  df-ip 15891  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-hom 15898  df-cco 15899  df-rest 16015  df-topn 16016  df-0g 16034  df-gsum 16035  df-topgen 16036  df-pt 16037  df-prds 16040  df-xrs 16094  df-qtop 16099  df-imas 16100  df-xps 16102  df-mre 16178  df-mrc 16179  df-acs 16181  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-mulg 17473  df-cntz 17682  df-cmn 18127  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-cnfld 19679  df-top 20631  df-topon 20648  df-topsp 20661  df-bases 20674  df-cld 20746  df-ntr 20747  df-cls 20748  df-cn 20954  df-cnp 20955  df-t1 21041  df-haus 21042  df-tx 21288  df-hmeo 21481  df-xms 22048  df-ms 22049  df-tms 22050  df-grpo 27217  df-gid 27218  df-ginv 27219  df-gdiv 27220  df-ablo 27269  df-vc 27284  df-nv 27317  df-va 27320  df-ba 27321  df-sm 27322  df-0v 27323  df-vs 27324  df-nmcv 27325  df-ims 27326  df-dip 27426  df-ph 27538
This theorem is referenced by:  siilem2  27577
  Copyright terms: Public domain W3C validator