MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp-10l Structured version   Visualization version   GIF version

Theorem simp-10l 813
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.)
Assertion
Ref Expression
simp-10l (((((((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜑)

Proof of Theorem simp-10l
StepHypRef Expression
1 simp-9l 811 . 2 ((((((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → 𝜑)
21adantr 479 1 (((((((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 195  df-an 384
This theorem is referenced by:  simp-11l  815  midexlem  25305
  Copyright terms: Public domain W3C validator