![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp123 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp123 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp23 1251 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜒) | |
2 | 1 | 3ad2ant1 1128 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: ax5seglem3 26031 axpasch 26041 exatleN 35211 ps-2b 35289 3atlem1 35290 3atlem2 35291 3atlem4 35293 3atlem5 35294 3atlem6 35295 2llnjaN 35373 2llnjN 35374 4atlem12b 35418 2lplnja 35426 2lplnj 35427 dalemrea 35435 dath2 35544 lneq2at 35585 osumcllem7N 35769 cdleme26ee 36168 cdlemg35 36521 cdlemg36 36522 cdlemj1 36629 cdlemk23-3 36710 cdlemk25-3 36712 cdlemk26b-3 36713 cdlemk27-3 36715 cdlemk28-3 36716 cdleml3N 36786 |
Copyright terms: Public domain | W3C validator |