MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp232 Structured version   Visualization version   GIF version

Theorem simp232 1204
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp232 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜁) → 𝜓)

Proof of Theorem simp232
StepHypRef Expression
1 simp32 1096 . 2 ((𝜃𝜏 ∧ (𝜑𝜓𝜒)) → 𝜓)
213ad2ant2 1081 1 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜁) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1038
This theorem is referenced by:  cdlemd3  34964  cdleme21ct  35094  cdleme21e  35096  cdleme21f  35097  cdleme21i  35100  cdleme26eALTN  35126  cdlemk23-3  35667  cdlemk25-3  35669
  Copyright terms: Public domain W3C validator