Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3r2 Structured version   Visualization version   GIF version

Theorem simp3r2 1168
 Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3r2 ((𝜏𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜓)

Proof of Theorem simp3r2
StepHypRef Expression
1 simpr2 1066 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜓)
213ad2ant3 1082 1 ((𝜏𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1038 This theorem is referenced by:  nllyrest  21194  noprefixmo  31565  cdlemblem  34545  cdleme21  35091  cdleme22b  35095  cdleme40m  35221  cdlemg34  35466  cdlemk5u  35615  cdlemk6u  35616  cdlemk21N  35627  cdlemk20  35628  cdlemk26b-3  35659  cdlemk26-3  35660  cdlemk28-3  35662  cdlemky  35680  cdlemk11t  35700  cdlemkyyN  35716  stoweidlem56  39567
 Copyright terms: Public domain W3C validator