MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sin4lt0 Structured version   Visualization version   GIF version

Theorem sin4lt0 14850
Description: The sine of 4 is negative. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
sin4lt0 (sin‘4) < 0

Proof of Theorem sin4lt0
StepHypRef Expression
1 2t2e4 11121 . . . 4 (2 · 2) = 4
21fveq2i 6151 . . 3 (sin‘(2 · 2)) = (sin‘4)
3 2cn 11035 . . . 4 2 ∈ ℂ
4 sin2t 14832 . . . 4 (2 ∈ ℂ → (sin‘(2 · 2)) = (2 · ((sin‘2) · (cos‘2))))
53, 4ax-mp 5 . . 3 (sin‘(2 · 2)) = (2 · ((sin‘2) · (cos‘2)))
62, 5eqtr3i 2645 . 2 (sin‘4) = (2 · ((sin‘2) · (cos‘2)))
7 sincos2sgn 14849 . . . . . . 7 (0 < (sin‘2) ∧ (cos‘2) < 0)
87simpri 478 . . . . . 6 (cos‘2) < 0
9 2re 11034 . . . . . . . 8 2 ∈ ℝ
10 recoscl 14796 . . . . . . . 8 (2 ∈ ℝ → (cos‘2) ∈ ℝ)
119, 10ax-mp 5 . . . . . . 7 (cos‘2) ∈ ℝ
12 0re 9984 . . . . . . 7 0 ∈ ℝ
13 resincl 14795 . . . . . . . . 9 (2 ∈ ℝ → (sin‘2) ∈ ℝ)
149, 13ax-mp 5 . . . . . . . 8 (sin‘2) ∈ ℝ
157simpli 474 . . . . . . . 8 0 < (sin‘2)
1614, 15pm3.2i 471 . . . . . . 7 ((sin‘2) ∈ ℝ ∧ 0 < (sin‘2))
17 ltmul2 10818 . . . . . . 7 (((cos‘2) ∈ ℝ ∧ 0 ∈ ℝ ∧ ((sin‘2) ∈ ℝ ∧ 0 < (sin‘2))) → ((cos‘2) < 0 ↔ ((sin‘2) · (cos‘2)) < ((sin‘2) · 0)))
1811, 12, 16, 17mp3an 1421 . . . . . 6 ((cos‘2) < 0 ↔ ((sin‘2) · (cos‘2)) < ((sin‘2) · 0))
198, 18mpbi 220 . . . . 5 ((sin‘2) · (cos‘2)) < ((sin‘2) · 0)
2014recni 9996 . . . . . 6 (sin‘2) ∈ ℂ
2120mul01i 10170 . . . . 5 ((sin‘2) · 0) = 0
2219, 21breqtri 4638 . . . 4 ((sin‘2) · (cos‘2)) < 0
2314, 11remulcli 9998 . . . . 5 ((sin‘2) · (cos‘2)) ∈ ℝ
24 2pos 11056 . . . . . 6 0 < 2
259, 24pm3.2i 471 . . . . 5 (2 ∈ ℝ ∧ 0 < 2)
26 ltmul2 10818 . . . . 5 ((((sin‘2) · (cos‘2)) ∈ ℝ ∧ 0 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((sin‘2) · (cos‘2)) < 0 ↔ (2 · ((sin‘2) · (cos‘2))) < (2 · 0)))
2723, 12, 25, 26mp3an 1421 . . . 4 (((sin‘2) · (cos‘2)) < 0 ↔ (2 · ((sin‘2) · (cos‘2))) < (2 · 0))
2822, 27mpbi 220 . . 3 (2 · ((sin‘2) · (cos‘2))) < (2 · 0)
293mul01i 10170 . . 3 (2 · 0) = 0
3028, 29breqtri 4638 . 2 (2 · ((sin‘2) · (cos‘2))) < 0
316, 30eqbrtri 4634 1 (sin‘4) < 0
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1480  wcel 1987   class class class wbr 4613  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880   · cmul 9885   < clt 10018  2c2 11014  4c4 11016  sincsin 14719  cosccos 14720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-ioc 12122  df-ico 12123  df-fz 12269  df-fzo 12407  df-fl 12533  df-seq 12742  df-exp 12801  df-fac 13001  df-bc 13030  df-hash 13058  df-shft 13741  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-limsup 14136  df-clim 14153  df-rlim 14154  df-sum 14351  df-ef 14723  df-sin 14725  df-cos 14726
This theorem is referenced by:  pilem3  24111
  Copyright terms: Public domain W3C validator