MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinasin Structured version   Visualization version   GIF version

Theorem sinasin 25470
Description: The arcsine function is an inverse to sin. This is the main property that justifies the notation arcsin or sin↑-1. Because sin is not an injection, the other converse identity asinsin 25473 is only true under limited circumstances. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
sinasin (𝐴 ∈ ℂ → (sin‘(arcsin‘𝐴)) = 𝐴)

Proof of Theorem sinasin
StepHypRef Expression
1 asincl 25454 . . 3 (𝐴 ∈ ℂ → (arcsin‘𝐴) ∈ ℂ)
2 sinval 15478 . . 3 ((arcsin‘𝐴) ∈ ℂ → (sin‘(arcsin‘𝐴)) = (((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) / (2 · i)))
31, 2syl 17 . 2 (𝐴 ∈ ℂ → (sin‘(arcsin‘𝐴)) = (((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) / (2 · i)))
4 ax-icn 10599 . . . . . 6 i ∈ ℂ
5 mulcl 10624 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
64, 5mpan 688 . . . . 5 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
76negcld 10987 . . . . 5 (𝐴 ∈ ℂ → -(i · 𝐴) ∈ ℂ)
8 ax-1cn 10598 . . . . . . 7 1 ∈ ℂ
9 sqcl 13487 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
10 subcl 10888 . . . . . . 7 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ)
118, 9, 10sylancr 589 . . . . . 6 (𝐴 ∈ ℂ → (1 − (𝐴↑2)) ∈ ℂ)
1211sqrtcld 14800 . . . . 5 (𝐴 ∈ ℂ → (√‘(1 − (𝐴↑2))) ∈ ℂ)
136, 7, 12pnpcan2d 11038 . . . 4 (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) − (-(i · 𝐴) + (√‘(1 − (𝐴↑2))))) = ((i · 𝐴) − -(i · 𝐴)))
14 efiasin 25469 . . . . 5 (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘𝐴))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
15 mulneg12 11081 . . . . . . . . 9 ((i ∈ ℂ ∧ (arcsin‘𝐴) ∈ ℂ) → (-i · (arcsin‘𝐴)) = (i · -(arcsin‘𝐴)))
164, 1, 15sylancr 589 . . . . . . . 8 (𝐴 ∈ ℂ → (-i · (arcsin‘𝐴)) = (i · -(arcsin‘𝐴)))
17 asinneg 25467 . . . . . . . . 9 (𝐴 ∈ ℂ → (arcsin‘-𝐴) = -(arcsin‘𝐴))
1817oveq2d 7175 . . . . . . . 8 (𝐴 ∈ ℂ → (i · (arcsin‘-𝐴)) = (i · -(arcsin‘𝐴)))
1916, 18eqtr4d 2862 . . . . . . 7 (𝐴 ∈ ℂ → (-i · (arcsin‘𝐴)) = (i · (arcsin‘-𝐴)))
2019fveq2d 6677 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) = (exp‘(i · (arcsin‘-𝐴))))
21 negcl 10889 . . . . . . 7 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
22 efiasin 25469 . . . . . . 7 (-𝐴 ∈ ℂ → (exp‘(i · (arcsin‘-𝐴))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))
2321, 22syl 17 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘-𝐴))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))
24 mulneg2 11080 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴))
254, 24mpan 688 . . . . . . 7 (𝐴 ∈ ℂ → (i · -𝐴) = -(i · 𝐴))
26 sqneg 13485 . . . . . . . . 9 (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2))
2726oveq2d 7175 . . . . . . . 8 (𝐴 ∈ ℂ → (1 − (-𝐴↑2)) = (1 − (𝐴↑2)))
2827fveq2d 6677 . . . . . . 7 (𝐴 ∈ ℂ → (√‘(1 − (-𝐴↑2))) = (√‘(1 − (𝐴↑2))))
2925, 28oveq12d 7177 . . . . . 6 (𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) = (-(i · 𝐴) + (√‘(1 − (𝐴↑2)))))
3020, 23, 293eqtrd 2863 . . . . 5 (𝐴 ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) = (-(i · 𝐴) + (√‘(1 − (𝐴↑2)))))
3114, 30oveq12d 7177 . . . 4 (𝐴 ∈ ℂ → ((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) = (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) − (-(i · 𝐴) + (√‘(1 − (𝐴↑2))))))
3262timesd 11883 . . . . 5 (𝐴 ∈ ℂ → (2 · (i · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
33 2cn 11715 . . . . . 6 2 ∈ ℂ
34 mulass 10628 . . . . . 6 ((2 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((2 · i) · 𝐴) = (2 · (i · 𝐴)))
3533, 4, 34mp3an12 1447 . . . . 5 (𝐴 ∈ ℂ → ((2 · i) · 𝐴) = (2 · (i · 𝐴)))
366, 6subnegd 11007 . . . . 5 (𝐴 ∈ ℂ → ((i · 𝐴) − -(i · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
3732, 35, 363eqtr4d 2869 . . . 4 (𝐴 ∈ ℂ → ((2 · i) · 𝐴) = ((i · 𝐴) − -(i · 𝐴)))
3813, 31, 373eqtr4d 2869 . . 3 (𝐴 ∈ ℂ → ((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) = ((2 · i) · 𝐴))
39 mulcl 10624 . . . . . . 7 ((i ∈ ℂ ∧ (arcsin‘𝐴) ∈ ℂ) → (i · (arcsin‘𝐴)) ∈ ℂ)
404, 1, 39sylancr 589 . . . . . 6 (𝐴 ∈ ℂ → (i · (arcsin‘𝐴)) ∈ ℂ)
41 efcl 15439 . . . . . 6 ((i · (arcsin‘𝐴)) ∈ ℂ → (exp‘(i · (arcsin‘𝐴))) ∈ ℂ)
4240, 41syl 17 . . . . 5 (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘𝐴))) ∈ ℂ)
43 negicn 10890 . . . . . . 7 -i ∈ ℂ
44 mulcl 10624 . . . . . . 7 ((-i ∈ ℂ ∧ (arcsin‘𝐴) ∈ ℂ) → (-i · (arcsin‘𝐴)) ∈ ℂ)
4543, 1, 44sylancr 589 . . . . . 6 (𝐴 ∈ ℂ → (-i · (arcsin‘𝐴)) ∈ ℂ)
46 efcl 15439 . . . . . 6 ((-i · (arcsin‘𝐴)) ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) ∈ ℂ)
4745, 46syl 17 . . . . 5 (𝐴 ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) ∈ ℂ)
4842, 47subcld 11000 . . . 4 (𝐴 ∈ ℂ → ((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) ∈ ℂ)
49 id 22 . . . 4 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
50 2mulicn 11863 . . . . 5 (2 · i) ∈ ℂ
5150a1i 11 . . . 4 (𝐴 ∈ ℂ → (2 · i) ∈ ℂ)
52 2muline0 11864 . . . . 5 (2 · i) ≠ 0
5352a1i 11 . . . 4 (𝐴 ∈ ℂ → (2 · i) ≠ 0)
5448, 49, 51, 53divmul2d 11452 . . 3 (𝐴 ∈ ℂ → ((((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) / (2 · i)) = 𝐴 ↔ ((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) = ((2 · i) · 𝐴)))
5538, 54mpbird 259 . 2 (𝐴 ∈ ℂ → (((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) / (2 · i)) = 𝐴)
563, 55eqtrd 2859 1 (𝐴 ∈ ℂ → (sin‘(arcsin‘𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2113  wne 3019  cfv 6358  (class class class)co 7159  cc 10538  0cc0 10540  1c1 10541  ici 10542   + caddc 10543   · cmul 10545  cmin 10873  -cneg 10874   / cdiv 11300  2c2 11695  cexp 13432  csqrt 14595  expce 15418  sincsin 15420  arcsincasin 25443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14429  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-limsup 14831  df-clim 14848  df-rlim 14849  df-sum 15046  df-ef 15424  df-sin 15426  df-cos 15427  df-pi 15429  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-mulg 18228  df-cntz 18450  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-fbas 20545  df-fg 20546  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-lp 21747  df-perf 21748  df-cn 21838  df-cnp 21839  df-haus 21926  df-tx 22173  df-hmeo 22366  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-xms 22933  df-ms 22934  df-tms 22935  df-cncf 23489  df-limc 24467  df-dv 24468  df-log 25143  df-asin 25446
This theorem is referenced by:  cosacos  25471  asinsinb  25478
  Copyright terms: Public domain W3C validator