MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sincosq4sgn Structured version   Visualization version   GIF version

Theorem sincosq4sgn 25081
Description: The signs of the sine and cosine functions in the fourth quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
sincosq4sgn (𝐴 ∈ ((3 · (π / 2))(,)(2 · π)) → ((sin‘𝐴) < 0 ∧ 0 < (cos‘𝐴)))

Proof of Theorem sincosq4sgn
StepHypRef Expression
1 3re 11711 . . . . 5 3 ∈ ℝ
2 halfpire 25044 . . . . 5 (π / 2) ∈ ℝ
31, 2remulcli 10651 . . . 4 (3 · (π / 2)) ∈ ℝ
43rexri 10693 . . 3 (3 · (π / 2)) ∈ ℝ*
5 2re 11705 . . . . 5 2 ∈ ℝ
6 pire 25038 . . . . 5 π ∈ ℝ
75, 6remulcli 10651 . . . 4 (2 · π) ∈ ℝ
87rexri 10693 . . 3 (2 · π) ∈ ℝ*
9 elioo2 12773 . . 3 (((3 · (π / 2)) ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (𝐴 ∈ ((3 · (π / 2))(,)(2 · π)) ↔ (𝐴 ∈ ℝ ∧ (3 · (π / 2)) < 𝐴𝐴 < (2 · π))))
104, 8, 9mp2an 690 . 2 (𝐴 ∈ ((3 · (π / 2))(,)(2 · π)) ↔ (𝐴 ∈ ℝ ∧ (3 · (π / 2)) < 𝐴𝐴 < (2 · π)))
11 df-3 11695 . . . . . . . . . . . 12 3 = (2 + 1)
1211oveq1i 7160 . . . . . . . . . . 11 (3 · (π / 2)) = ((2 + 1) · (π / 2))
13 2cn 11706 . . . . . . . . . . . 12 2 ∈ ℂ
14 ax-1cn 10589 . . . . . . . . . . . 12 1 ∈ ℂ
152recni 10649 . . . . . . . . . . . 12 (π / 2) ∈ ℂ
1613, 14, 15adddiri 10648 . . . . . . . . . . 11 ((2 + 1) · (π / 2)) = ((2 · (π / 2)) + (1 · (π / 2)))
176recni 10649 . . . . . . . . . . . . 13 π ∈ ℂ
18 2ne0 11735 . . . . . . . . . . . . 13 2 ≠ 0
1917, 13, 18divcan2i 11377 . . . . . . . . . . . 12 (2 · (π / 2)) = π
2015mulid2i 10640 . . . . . . . . . . . 12 (1 · (π / 2)) = (π / 2)
2119, 20oveq12i 7162 . . . . . . . . . . 11 ((2 · (π / 2)) + (1 · (π / 2))) = (π + (π / 2))
2212, 16, 213eqtrri 2849 . . . . . . . . . 10 (π + (π / 2)) = (3 · (π / 2))
2322breq1i 5065 . . . . . . . . 9 ((π + (π / 2)) < 𝐴 ↔ (3 · (π / 2)) < 𝐴)
24 ltaddsub 11108 . . . . . . . . . 10 ((π ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((π + (π / 2)) < 𝐴 ↔ π < (𝐴 − (π / 2))))
256, 2, 24mp3an12 1447 . . . . . . . . 9 (𝐴 ∈ ℝ → ((π + (π / 2)) < 𝐴 ↔ π < (𝐴 − (π / 2))))
2623, 25syl5bbr 287 . . . . . . . 8 (𝐴 ∈ ℝ → ((3 · (π / 2)) < 𝐴 ↔ π < (𝐴 − (π / 2))))
27 ltsubadd 11104 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ (3 · (π / 2)) ∈ ℝ) → ((𝐴 − (π / 2)) < (3 · (π / 2)) ↔ 𝐴 < ((3 · (π / 2)) + (π / 2))))
282, 3, 27mp3an23 1449 . . . . . . . . 9 (𝐴 ∈ ℝ → ((𝐴 − (π / 2)) < (3 · (π / 2)) ↔ 𝐴 < ((3 · (π / 2)) + (π / 2))))
29 df-4 11696 . . . . . . . . . . . . 13 4 = (3 + 1)
3029oveq1i 7160 . . . . . . . . . . . 12 (4 · (π / 2)) = ((3 + 1) · (π / 2))
311recni 10649 . . . . . . . . . . . . 13 3 ∈ ℂ
3231, 14, 15adddiri 10648 . . . . . . . . . . . 12 ((3 + 1) · (π / 2)) = ((3 · (π / 2)) + (1 · (π / 2)))
3320oveq2i 7161 . . . . . . . . . . . 12 ((3 · (π / 2)) + (1 · (π / 2))) = ((3 · (π / 2)) + (π / 2))
3430, 32, 333eqtrri 2849 . . . . . . . . . . 11 ((3 · (π / 2)) + (π / 2)) = (4 · (π / 2))
35 4cn 11716 . . . . . . . . . . . . 13 4 ∈ ℂ
36 2cnne0 11841 . . . . . . . . . . . . 13 (2 ∈ ℂ ∧ 2 ≠ 0)
37 div12 11314 . . . . . . . . . . . . 13 ((4 ∈ ℂ ∧ π ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (4 · (π / 2)) = (π · (4 / 2)))
3835, 17, 36, 37mp3an 1457 . . . . . . . . . . . 12 (4 · (π / 2)) = (π · (4 / 2))
39 4d2e2 11801 . . . . . . . . . . . . . 14 (4 / 2) = 2
4039oveq2i 7161 . . . . . . . . . . . . 13 (π · (4 / 2)) = (π · 2)
4117, 13mulcomi 10643 . . . . . . . . . . . . 13 (π · 2) = (2 · π)
4240, 41eqtri 2844 . . . . . . . . . . . 12 (π · (4 / 2)) = (2 · π)
4338, 42eqtri 2844 . . . . . . . . . . 11 (4 · (π / 2)) = (2 · π)
4434, 43eqtri 2844 . . . . . . . . . 10 ((3 · (π / 2)) + (π / 2)) = (2 · π)
4544breq2i 5066 . . . . . . . . 9 (𝐴 < ((3 · (π / 2)) + (π / 2)) ↔ 𝐴 < (2 · π))
4628, 45syl6rbb 290 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 < (2 · π) ↔ (𝐴 − (π / 2)) < (3 · (π / 2))))
4726, 46anbi12d 632 . . . . . . 7 (𝐴 ∈ ℝ → (((3 · (π / 2)) < 𝐴𝐴 < (2 · π)) ↔ (π < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (3 · (π / 2)))))
48 resubcl 10944 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (𝐴 − (π / 2)) ∈ ℝ)
492, 48mpan2 689 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 − (π / 2)) ∈ ℝ)
506rexri 10693 . . . . . . . . . . 11 π ∈ ℝ*
51 elioo2 12773 . . . . . . . . . . 11 ((π ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → ((𝐴 − (π / 2)) ∈ (π(,)(3 · (π / 2))) ↔ ((𝐴 − (π / 2)) ∈ ℝ ∧ π < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (3 · (π / 2)))))
5250, 4, 51mp2an 690 . . . . . . . . . 10 ((𝐴 − (π / 2)) ∈ (π(,)(3 · (π / 2))) ↔ ((𝐴 − (π / 2)) ∈ ℝ ∧ π < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (3 · (π / 2))))
53 sincosq3sgn 25080 . . . . . . . . . 10 ((𝐴 − (π / 2)) ∈ (π(,)(3 · (π / 2))) → ((sin‘(𝐴 − (π / 2))) < 0 ∧ (cos‘(𝐴 − (π / 2))) < 0))
5452, 53sylbir 237 . . . . . . . . 9 (((𝐴 − (π / 2)) ∈ ℝ ∧ π < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (3 · (π / 2))) → ((sin‘(𝐴 − (π / 2))) < 0 ∧ (cos‘(𝐴 − (π / 2))) < 0))
5549, 54syl3an1 1159 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ π < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (3 · (π / 2))) → ((sin‘(𝐴 − (π / 2))) < 0 ∧ (cos‘(𝐴 − (π / 2))) < 0))
56553expib 1118 . . . . . . 7 (𝐴 ∈ ℝ → ((π < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (3 · (π / 2))) → ((sin‘(𝐴 − (π / 2))) < 0 ∧ (cos‘(𝐴 − (π / 2))) < 0)))
5747, 56sylbid 242 . . . . . 6 (𝐴 ∈ ℝ → (((3 · (π / 2)) < 𝐴𝐴 < (2 · π)) → ((sin‘(𝐴 − (π / 2))) < 0 ∧ (cos‘(𝐴 − (π / 2))) < 0)))
5849resincld 15490 . . . . . . . 8 (𝐴 ∈ ℝ → (sin‘(𝐴 − (π / 2))) ∈ ℝ)
5958lt0neg1d 11203 . . . . . . 7 (𝐴 ∈ ℝ → ((sin‘(𝐴 − (π / 2))) < 0 ↔ 0 < -(sin‘(𝐴 − (π / 2)))))
6059anbi1d 631 . . . . . 6 (𝐴 ∈ ℝ → (((sin‘(𝐴 − (π / 2))) < 0 ∧ (cos‘(𝐴 − (π / 2))) < 0) ↔ (0 < -(sin‘(𝐴 − (π / 2))) ∧ (cos‘(𝐴 − (π / 2))) < 0)))
6157, 60sylibd 241 . . . . 5 (𝐴 ∈ ℝ → (((3 · (π / 2)) < 𝐴𝐴 < (2 · π)) → (0 < -(sin‘(𝐴 − (π / 2))) ∧ (cos‘(𝐴 − (π / 2))) < 0)))
62 recn 10621 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
63 pncan3 10888 . . . . . . . . . 10 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((π / 2) + (𝐴 − (π / 2))) = 𝐴)
6415, 62, 63sylancr 589 . . . . . . . . 9 (𝐴 ∈ ℝ → ((π / 2) + (𝐴 − (π / 2))) = 𝐴)
6564fveq2d 6668 . . . . . . . 8 (𝐴 ∈ ℝ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘𝐴))
6649recnd 10663 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 − (π / 2)) ∈ ℂ)
67 coshalfpip 25074 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ ℂ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = -(sin‘(𝐴 − (π / 2))))
6866, 67syl 17 . . . . . . . 8 (𝐴 ∈ ℝ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = -(sin‘(𝐴 − (π / 2))))
6965, 68eqtr3d 2858 . . . . . . 7 (𝐴 ∈ ℝ → (cos‘𝐴) = -(sin‘(𝐴 − (π / 2))))
7069breq2d 5070 . . . . . 6 (𝐴 ∈ ℝ → (0 < (cos‘𝐴) ↔ 0 < -(sin‘(𝐴 − (π / 2)))))
7164fveq2d 6668 . . . . . . . 8 (𝐴 ∈ ℝ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (sin‘𝐴))
72 sinhalfpip 25072 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ ℂ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘(𝐴 − (π / 2))))
7366, 72syl 17 . . . . . . . 8 (𝐴 ∈ ℝ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘(𝐴 − (π / 2))))
7471, 73eqtr3d 2858 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘𝐴) = (cos‘(𝐴 − (π / 2))))
7574breq1d 5068 . . . . . 6 (𝐴 ∈ ℝ → ((sin‘𝐴) < 0 ↔ (cos‘(𝐴 − (π / 2))) < 0))
7670, 75anbi12d 632 . . . . 5 (𝐴 ∈ ℝ → ((0 < (cos‘𝐴) ∧ (sin‘𝐴) < 0) ↔ (0 < -(sin‘(𝐴 − (π / 2))) ∧ (cos‘(𝐴 − (π / 2))) < 0)))
7761, 76sylibrd 261 . . . 4 (𝐴 ∈ ℝ → (((3 · (π / 2)) < 𝐴𝐴 < (2 · π)) → (0 < (cos‘𝐴) ∧ (sin‘𝐴) < 0)))
78773impib 1112 . . 3 ((𝐴 ∈ ℝ ∧ (3 · (π / 2)) < 𝐴𝐴 < (2 · π)) → (0 < (cos‘𝐴) ∧ (sin‘𝐴) < 0))
7978ancomd 464 . 2 ((𝐴 ∈ ℝ ∧ (3 · (π / 2)) < 𝐴𝐴 < (2 · π)) → ((sin‘𝐴) < 0 ∧ 0 < (cos‘𝐴)))
8010, 79sylbi 219 1 (𝐴 ∈ ((3 · (π / 2))(,)(2 · π)) → ((sin‘𝐴) < 0 ∧ 0 < (cos‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016   class class class wbr 5058  cfv 6349  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  *cxr 10668   < clt 10669  cmin 10864  -cneg 10865   / cdiv 11291  2c2 11686  3c3 11687  4c4 11688  (,)cioo 12732  sincsin 15411  cosccos 15412  πcpi 15414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ioc 12737  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-shft 14420  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037  df-ef 15415  df-sin 15417  df-cos 15418  df-pi 15420  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-lp 21738  df-perf 21739  df-cn 21829  df-cnp 21830  df-haus 21917  df-tx 22164  df-hmeo 22357  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-xms 22924  df-ms 22925  df-tms 22926  df-cncf 23480  df-limc 24458  df-dv 24459
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator