![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sitmf | Structured version Visualization version GIF version |
Description: The integral metric as a function. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
Ref | Expression |
---|---|
sitmf.0 | ⊢ (𝜑 → 𝑊 ∈ Mnd) |
sitmf.1 | ⊢ (𝜑 → 𝑊 ∈ ∞MetSp) |
sitmf.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
Ref | Expression |
---|---|
sitmf | ⊢ (𝜑 → (𝑊sitm𝑀):(dom (𝑊sitg𝑀) × dom (𝑊sitg𝑀))⟶(0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . . . . . 6 ⊢ (dist‘𝑊) = (dist‘𝑊) | |
2 | sitmf.1 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ ∞MetSp) | |
3 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → 𝑊 ∈ ∞MetSp) |
4 | sitmf.2 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → 𝑀 ∈ ∪ ran measures) |
6 | simprl 809 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → 𝑓 ∈ dom (𝑊sitg𝑀)) | |
7 | simprr 811 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → 𝑔 ∈ dom (𝑊sitg𝑀)) | |
8 | 1, 3, 5, 6, 7 | sitmfval 30540 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → (𝑓(𝑊sitm𝑀)𝑔) = (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘𝑓 (dist‘𝑊)𝑔))) |
9 | sitmf.0 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Mnd) | |
10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → 𝑊 ∈ Mnd) |
11 | 10, 3, 5, 6, 7 | sitmcl 30541 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → (𝑓(𝑊sitm𝑀)𝑔) ∈ (0[,]+∞)) |
12 | 8, 11 | eqeltrrd 2731 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘𝑓 (dist‘𝑊)𝑔)) ∈ (0[,]+∞)) |
13 | 12 | ralrimivva 3000 | . . 3 ⊢ (𝜑 → ∀𝑓 ∈ dom (𝑊sitg𝑀)∀𝑔 ∈ dom (𝑊sitg𝑀)(((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘𝑓 (dist‘𝑊)𝑔)) ∈ (0[,]+∞)) |
14 | eqid 2651 | . . . 4 ⊢ (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘𝑓 (dist‘𝑊)𝑔))) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘𝑓 (dist‘𝑊)𝑔))) | |
15 | 14 | fmpt2 7282 | . . 3 ⊢ (∀𝑓 ∈ dom (𝑊sitg𝑀)∀𝑔 ∈ dom (𝑊sitg𝑀)(((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘𝑓 (dist‘𝑊)𝑔)) ∈ (0[,]+∞) ↔ (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘𝑓 (dist‘𝑊)𝑔))):(dom (𝑊sitg𝑀) × dom (𝑊sitg𝑀))⟶(0[,]+∞)) |
16 | 13, 15 | sylib 208 | . 2 ⊢ (𝜑 → (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘𝑓 (dist‘𝑊)𝑔))):(dom (𝑊sitg𝑀) × dom (𝑊sitg𝑀))⟶(0[,]+∞)) |
17 | 1, 2, 4 | sitmval 30539 | . . 3 ⊢ (𝜑 → (𝑊sitm𝑀) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘𝑓 (dist‘𝑊)𝑔)))) |
18 | 17 | feq1d 6068 | . 2 ⊢ (𝜑 → ((𝑊sitm𝑀):(dom (𝑊sitg𝑀) × dom (𝑊sitg𝑀))⟶(0[,]+∞) ↔ (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘𝑓 (dist‘𝑊)𝑔))):(dom (𝑊sitg𝑀) × dom (𝑊sitg𝑀))⟶(0[,]+∞))) |
19 | 16, 18 | mpbird 247 | 1 ⊢ (𝜑 → (𝑊sitm𝑀):(dom (𝑊sitg𝑀) × dom (𝑊sitg𝑀))⟶(0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2030 ∀wral 2941 ∪ cuni 4468 × cxp 5141 dom cdm 5143 ran crn 5144 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ↦ cmpt2 6692 ∘𝑓 cof 6937 0cc0 9974 +∞cpnf 10109 [,]cicc 12216 ↾s cress 15905 distcds 15997 ℝ*𝑠cxrs 16207 Mndcmnd 17341 ∞MetSpcxme 22169 measurescmeas 30386 sitmcsitm 30518 sitgcsitg 30519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-ac2 9323 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 ax-addf 10053 ax-mulf 10054 ax-xrssca 29801 ax-xrsvsca 29802 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-disj 4653 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-tpos 7397 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-fi 8358 df-sup 8389 df-inf 8390 df-oi 8456 df-card 8803 df-acn 8806 df-ac 8977 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-q 11827 df-rp 11871 df-xneg 11984 df-xadd 11985 df-xmul 11986 df-ioo 12217 df-ioc 12218 df-ico 12219 df-icc 12220 df-fz 12365 df-fzo 12505 df-fl 12633 df-mod 12709 df-seq 12842 df-exp 12901 df-fac 13101 df-bc 13130 df-hash 13158 df-shft 13851 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-limsup 14246 df-clim 14263 df-rlim 14264 df-sum 14461 df-ef 14842 df-sin 14844 df-cos 14845 df-pi 14847 df-dvds 15028 df-gcd 15264 df-numer 15490 df-denom 15491 df-gz 15681 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-starv 16003 df-sca 16004 df-vsca 16005 df-ip 16006 df-tset 16007 df-ple 16008 df-ds 16011 df-unif 16012 df-hom 16013 df-cco 16014 df-rest 16130 df-topn 16131 df-0g 16149 df-gsum 16150 df-topgen 16151 df-pt 16152 df-prds 16155 df-ordt 16208 df-xrs 16209 df-qtop 16214 df-imas 16215 df-xps 16217 df-mre 16293 df-mrc 16294 df-acs 16296 df-preset 16975 df-poset 16993 df-plt 17005 df-toset 17081 df-ps 17247 df-tsr 17248 df-plusf 17288 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-mhm 17382 df-submnd 17383 df-grp 17472 df-minusg 17473 df-sbg 17474 df-mulg 17588 df-subg 17638 df-ghm 17705 df-cntz 17796 df-od 17994 df-cmn 18241 df-abl 18242 df-mgp 18536 df-ur 18548 df-ring 18595 df-cring 18596 df-oppr 18669 df-dvdsr 18687 df-unit 18688 df-invr 18718 df-dvr 18729 df-rnghom 18763 df-drng 18797 df-field 18798 df-subrg 18826 df-abv 18865 df-lmod 18913 df-scaf 18914 df-sra 19220 df-rgmod 19221 df-nzr 19306 df-psmet 19786 df-xmet 19787 df-met 19788 df-bl 19789 df-mopn 19790 df-fbas 19791 df-fg 19792 df-metu 19793 df-cnfld 19795 df-zring 19867 df-zrh 19900 df-zlm 19901 df-chr 19902 df-refld 19999 df-top 20747 df-topon 20764 df-topsp 20785 df-bases 20798 df-cld 20871 df-ntr 20872 df-cls 20873 df-nei 20950 df-lp 20988 df-perf 20989 df-cn 21079 df-cnp 21080 df-t1 21166 df-haus 21167 df-reg 21168 df-cmp 21238 df-tx 21413 df-hmeo 21606 df-fil 21697 df-fm 21789 df-flim 21790 df-flf 21791 df-fcls 21792 df-cnext 21911 df-tmd 21923 df-tgp 21924 df-tsms 21977 df-trg 22010 df-ust 22051 df-utop 22082 df-uss 22107 df-usp 22108 df-ucn 22127 df-cfilu 22138 df-cusp 22149 df-xms 22172 df-ms 22173 df-tms 22174 df-nm 22434 df-ngp 22435 df-nrg 22437 df-nlm 22438 df-ii 22727 df-cncf 22728 df-cfil 23099 df-cmet 23101 df-cms 23178 df-limc 23675 df-dv 23676 df-log 24348 df-omnd 29827 df-ogrp 29828 df-orng 29925 df-ofld 29926 df-qqh 30145 df-rrh 30167 df-rrext 30171 df-esum 30218 df-siga 30299 df-sigagen 30330 df-meas 30387 df-mbfm 30441 df-sitg 30520 df-sitm 30521 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |