Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitmval Structured version   Visualization version   GIF version

Theorem sitmval 31609
Description: Value of the simple function integral metric for a given space 𝑊 and measure 𝑀. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
sitmval.d 𝐷 = (dist‘𝑊)
sitmval.1 (𝜑𝑊𝑉)
sitmval.2 (𝜑𝑀 ran measures)
Assertion
Ref Expression
sitmval (𝜑 → (𝑊sitm𝑀) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f 𝐷𝑔))))
Distinct variable groups:   𝑓,𝑔,𝑀   𝑓,𝑊,𝑔
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐷(𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem sitmval
Dummy variables 𝑤 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sitmval.1 . . 3 (𝜑𝑊𝑉)
2 elex 3514 . . 3 (𝑊𝑉𝑊 ∈ V)
31, 2syl 17 . 2 (𝜑𝑊 ∈ V)
4 sitmval.2 . 2 (𝜑𝑀 ran measures)
5 oveq1 7165 . . . . 5 (𝑤 = 𝑊 → (𝑤sitg𝑚) = (𝑊sitg𝑚))
65dmeqd 5776 . . . 4 (𝑤 = 𝑊 → dom (𝑤sitg𝑚) = dom (𝑊sitg𝑚))
7 fveq2 6672 . . . . . . 7 (𝑤 = 𝑊 → (dist‘𝑤) = (dist‘𝑊))
8 ofeq 7413 . . . . . . 7 ((dist‘𝑤) = (dist‘𝑊) → ∘f (dist‘𝑤) = ∘f (dist‘𝑊))
97, 8syl 17 . . . . . 6 (𝑤 = 𝑊 → ∘f (dist‘𝑤) = ∘f (dist‘𝑊))
109oveqd 7175 . . . . 5 (𝑤 = 𝑊 → (𝑓f (dist‘𝑤)𝑔) = (𝑓f (dist‘𝑊)𝑔))
1110fveq2d 6676 . . . 4 (𝑤 = 𝑊 → (((ℝ*𝑠s (0[,]+∞))sitg𝑚)‘(𝑓f (dist‘𝑤)𝑔)) = (((ℝ*𝑠s (0[,]+∞))sitg𝑚)‘(𝑓f (dist‘𝑊)𝑔)))
126, 6, 11mpoeq123dv 7231 . . 3 (𝑤 = 𝑊 → (𝑓 ∈ dom (𝑤sitg𝑚), 𝑔 ∈ dom (𝑤sitg𝑚) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑚)‘(𝑓f (dist‘𝑤)𝑔))) = (𝑓 ∈ dom (𝑊sitg𝑚), 𝑔 ∈ dom (𝑊sitg𝑚) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑚)‘(𝑓f (dist‘𝑊)𝑔))))
13 oveq2 7166 . . . . 5 (𝑚 = 𝑀 → (𝑊sitg𝑚) = (𝑊sitg𝑀))
1413dmeqd 5776 . . . 4 (𝑚 = 𝑀 → dom (𝑊sitg𝑚) = dom (𝑊sitg𝑀))
15 oveq2 7166 . . . . 5 (𝑚 = 𝑀 → ((ℝ*𝑠s (0[,]+∞))sitg𝑚) = ((ℝ*𝑠s (0[,]+∞))sitg𝑀))
16 sitmval.d . . . . . . . 8 𝐷 = (dist‘𝑊)
1716eqcomi 2832 . . . . . . 7 (dist‘𝑊) = 𝐷
18 ofeq 7413 . . . . . . 7 ((dist‘𝑊) = 𝐷 → ∘f (dist‘𝑊) = ∘f 𝐷)
1917, 18mp1i 13 . . . . . 6 (𝑚 = 𝑀 → ∘f (dist‘𝑊) = ∘f 𝐷)
2019oveqd 7175 . . . . 5 (𝑚 = 𝑀 → (𝑓f (dist‘𝑊)𝑔) = (𝑓f 𝐷𝑔))
2115, 20fveq12d 6679 . . . 4 (𝑚 = 𝑀 → (((ℝ*𝑠s (0[,]+∞))sitg𝑚)‘(𝑓f (dist‘𝑊)𝑔)) = (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f 𝐷𝑔)))
2214, 14, 21mpoeq123dv 7231 . . 3 (𝑚 = 𝑀 → (𝑓 ∈ dom (𝑊sitg𝑚), 𝑔 ∈ dom (𝑊sitg𝑚) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑚)‘(𝑓f (dist‘𝑊)𝑔))) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f 𝐷𝑔))))
23 df-sitm 31591 . . 3 sitm = (𝑤 ∈ V, 𝑚 ran measures ↦ (𝑓 ∈ dom (𝑤sitg𝑚), 𝑔 ∈ dom (𝑤sitg𝑚) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑚)‘(𝑓f (dist‘𝑤)𝑔))))
24 ovex 7191 . . . . 5 (𝑊sitg𝑀) ∈ V
2524dmex 7618 . . . 4 dom (𝑊sitg𝑀) ∈ V
2625, 25mpoex 7779 . . 3 (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f 𝐷𝑔))) ∈ V
2712, 22, 23, 26ovmpo 7312 . 2 ((𝑊 ∈ V ∧ 𝑀 ran measures) → (𝑊sitm𝑀) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f 𝐷𝑔))))
283, 4, 27syl2anc 586 1 (𝜑 → (𝑊sitm𝑀) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f 𝐷𝑔))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  Vcvv 3496   cuni 4840  dom cdm 5557  ran crn 5558  cfv 6357  (class class class)co 7158  cmpo 7160  f cof 7409  0cc0 10539  +∞cpnf 10674  [,]cicc 12744  s cress 16486  distcds 16576  *𝑠cxrs 16775  measurescmeas 31456  sitmcsitm 31588  sitgcsitg 31589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-1st 7691  df-2nd 7692  df-sitm 31591
This theorem is referenced by:  sitmfval  31610  sitmf  31612
  Copyright terms: Public domain W3C validator