MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slesolvec Structured version   Visualization version   GIF version

Theorem slesolvec 21282
Description: Every solution of a system of linear equations represented by a matrix and a vector is a vector. (Contributed by AV, 10-Feb-2019.) (Revised by AV, 27-Feb-2019.)
Hypotheses
Ref Expression
slesolex.a 𝐴 = (𝑁 Mat 𝑅)
slesolex.b 𝐵 = (Base‘𝐴)
slesolex.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
slesolex.x · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
Assertion
Ref Expression
slesolvec (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)) → ((𝑋 · 𝑍) = 𝑌𝑍𝑉))

Proof of Theorem slesolvec
StepHypRef Expression
1 slesolex.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
2 slesolex.b . . . . . . 7 𝐵 = (Base‘𝐴)
31, 2matrcl 21015 . . . . . 6 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
43simpld 497 . . . . 5 (𝑋𝐵𝑁 ∈ Fin)
5 simpr 487 . . . . . . . 8 ((𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) → 𝑁 ∈ Fin)
6 simpl 485 . . . . . . . 8 ((𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) → 𝑁 ≠ ∅)
75, 5, 63jca 1124 . . . . . . 7 ((𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))
87ex 415 . . . . . 6 (𝑁 ≠ ∅ → (𝑁 ∈ Fin → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)))
98adantr 483 . . . . 5 ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)))
104, 9syl5com 31 . . . 4 (𝑋𝐵 → ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)))
1110adantr 483 . . 3 ((𝑋𝐵𝑌𝑉) → ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)))
1211impcom 410 . 2 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))
13 simpr 487 . . 3 ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
14 simpr 487 . . 3 ((𝑋𝐵𝑌𝑉) → 𝑌𝑉)
1513, 14anim12i 614 . 2 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)) → (𝑅 ∈ Ring ∧ 𝑌𝑉))
16 eqid 2821 . . 3 (Base‘𝑅) = (Base‘𝑅)
17 eqid 2821 . . 3 ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = ((Base‘𝑅) ↑m (𝑁 × 𝑁))
18 slesolex.v . . 3 𝑉 = ((Base‘𝑅) ↑m 𝑁)
19 slesolex.x . . 3 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
2016, 17, 18, 19, 18mavmulsolcl 21154 . 2 (((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) ∧ (𝑅 ∈ Ring ∧ 𝑌𝑉)) → ((𝑋 · 𝑍) = 𝑌𝑍𝑉))
2112, 15, 20syl2anc 586 1 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)) → ((𝑋 · 𝑍) = 𝑌𝑍𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  Vcvv 3494  c0 4290  cop 4566   × cxp 5547  cfv 6349  (class class class)co 7150  m cmap 8400  Fincfn 8503  Basecbs 16477  Ringcrg 19291   Mat cmat 21010   maVecMul cmvmul 21143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-map 8402  df-slot 16481  df-base 16483  df-mat 21011  df-mvmul 21144
This theorem is referenced by:  slesolinv  21283  cramerimplem3  21288  cramerimp  21289  cramer  21294
  Copyright terms: Public domain W3C validator