![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmd0vcl | Structured version Visualization version GIF version |
Description: The zero vector is a vector. (ax-hv0cl 28090 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmd0vcl.v | ⊢ 𝑉 = (Base‘𝑊) |
slmd0vcl.z | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
slmd0vcl | ⊢ (𝑊 ∈ SLMod → 0 ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slmdmnd 29989 | . 2 ⊢ (𝑊 ∈ SLMod → 𝑊 ∈ Mnd) | |
2 | slmd0vcl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | slmd0vcl.z | . . 3 ⊢ 0 = (0g‘𝑊) | |
4 | 2, 3 | mndidcl 17430 | . 2 ⊢ (𝑊 ∈ Mnd → 0 ∈ 𝑉) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝑊 ∈ SLMod → 0 ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1596 ∈ wcel 2103 ‘cfv 6001 Basecbs 15980 0gc0g 16223 Mndcmnd 17416 SLModcslmd 29983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-iota 5964 df-fun 6003 df-fv 6009 df-riota 6726 df-ov 6768 df-0g 16225 df-mgm 17364 df-sgrp 17406 df-mnd 17417 df-cmn 18316 df-slmd 29984 |
This theorem is referenced by: slmdvs0 30008 |
Copyright terms: Public domain | W3C validator |