Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmd0vs Structured version   Visualization version   GIF version

Theorem slmd0vs 30854
Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (ax-hvmul0 28789 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmd0vs.v 𝑉 = (Base‘𝑊)
slmd0vs.f 𝐹 = (Scalar‘𝑊)
slmd0vs.s · = ( ·𝑠𝑊)
slmd0vs.o 𝑂 = (0g𝐹)
slmd0vs.z 0 = (0g𝑊)
Assertion
Ref Expression
slmd0vs ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → (𝑂 · 𝑋) = 0 )

Proof of Theorem slmd0vs
StepHypRef Expression
1 simpl 485 . . . 4 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → 𝑊 ∈ SLMod)
2 slmd0vs.f . . . . . 6 𝐹 = (Scalar‘𝑊)
3 eqid 2823 . . . . . 6 (Base‘𝐹) = (Base‘𝐹)
4 slmd0vs.o . . . . . 6 𝑂 = (0g𝐹)
52, 3, 4slmd0cl 30848 . . . . 5 (𝑊 ∈ SLMod → 𝑂 ∈ (Base‘𝐹))
65adantr 483 . . . 4 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → 𝑂 ∈ (Base‘𝐹))
7 simpr 487 . . . 4 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → 𝑋𝑉)
8 slmd0vs.v . . . . 5 𝑉 = (Base‘𝑊)
9 eqid 2823 . . . . 5 (+g𝑊) = (+g𝑊)
10 slmd0vs.s . . . . 5 · = ( ·𝑠𝑊)
11 slmd0vs.z . . . . 5 0 = (0g𝑊)
12 eqid 2823 . . . . 5 (+g𝐹) = (+g𝐹)
13 eqid 2823 . . . . 5 (.r𝐹) = (.r𝐹)
14 eqid 2823 . . . . 5 (1r𝐹) = (1r𝐹)
158, 9, 10, 11, 2, 3, 12, 13, 14, 4slmdlema 30833 . . . 4 ((𝑊 ∈ SLMod ∧ (𝑂 ∈ (Base‘𝐹) ∧ 𝑂 ∈ (Base‘𝐹)) ∧ (𝑋𝑉𝑋𝑉)) → (((𝑂 · 𝑋) ∈ 𝑉 ∧ (𝑂 · (𝑋(+g𝑊)𝑋)) = ((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)) ∧ ((𝑂(+g𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋))) ∧ (((𝑂(.r𝐹)𝑂) · 𝑋) = (𝑂 · (𝑂 · 𝑋)) ∧ ((1r𝐹) · 𝑋) = 𝑋 ∧ (𝑂 · 𝑋) = 0 )))
161, 6, 6, 7, 7, 15syl122anc 1375 . . 3 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → (((𝑂 · 𝑋) ∈ 𝑉 ∧ (𝑂 · (𝑋(+g𝑊)𝑋)) = ((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)) ∧ ((𝑂(+g𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋))) ∧ (((𝑂(.r𝐹)𝑂) · 𝑋) = (𝑂 · (𝑂 · 𝑋)) ∧ ((1r𝐹) · 𝑋) = 𝑋 ∧ (𝑂 · 𝑋) = 0 )))
1716simprd 498 . 2 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → (((𝑂(.r𝐹)𝑂) · 𝑋) = (𝑂 · (𝑂 · 𝑋)) ∧ ((1r𝐹) · 𝑋) = 𝑋 ∧ (𝑂 · 𝑋) = 0 ))
1817simp3d 1140 1 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → (𝑂 · 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  .rcmulr 16568  Scalarcsca 16570   ·𝑠 cvsca 16571  0gc0g 16715  1rcur 19253  SLModcslmd 30830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fv 6365  df-riota 7116  df-ov 7161  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-cmn 18910  df-srg 19258  df-slmd 30831
This theorem is referenced by:  slmdvs0  30855  gsumvsca2  30857
  Copyright terms: Public domain W3C validator