![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmdsn0 | Structured version Visualization version GIF version |
Description: The set of scalars in a semimodule is nonempty. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmdsn0.f | ⊢ 𝐹 = (Scalar‘𝑊) |
slmdsn0.b | ⊢ 𝐵 = (Base‘𝐹) |
Ref | Expression |
---|---|
slmdsn0 | ⊢ (𝑊 ∈ SLMod → 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slmdsn0.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | slmdsrg 29888 | . . 3 ⊢ (𝑊 ∈ SLMod → 𝐹 ∈ SRing) |
3 | srgmnd 18555 | . . 3 ⊢ (𝐹 ∈ SRing → 𝐹 ∈ Mnd) | |
4 | slmdsn0.b | . . . 4 ⊢ 𝐵 = (Base‘𝐹) | |
5 | eqid 2651 | . . . 4 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
6 | 4, 5 | mndidcl 17355 | . . 3 ⊢ (𝐹 ∈ Mnd → (0g‘𝐹) ∈ 𝐵) |
7 | 2, 3, 6 | 3syl 18 | . 2 ⊢ (𝑊 ∈ SLMod → (0g‘𝐹) ∈ 𝐵) |
8 | ne0i 3954 | . 2 ⊢ ((0g‘𝐹) ∈ 𝐵 → 𝐵 ≠ ∅) | |
9 | 7, 8 | syl 17 | 1 ⊢ (𝑊 ∈ SLMod → 𝐵 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∅c0 3948 ‘cfv 5926 Basecbs 15904 Scalarcsca 15991 0gc0g 16147 Mndcmnd 17341 SRingcsrg 18551 SLModcslmd 29881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-riota 6651 df-ov 6693 df-0g 16149 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-cmn 18241 df-srg 18552 df-slmd 29882 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |