Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdvs1 Structured version   Visualization version   GIF version

Theorem slmdvs1 29558
Description: Scalar product with ring unit. (ax-hvmulid 27712 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmdvs1.v 𝑉 = (Base‘𝑊)
slmdvs1.f 𝐹 = (Scalar‘𝑊)
slmdvs1.s · = ( ·𝑠𝑊)
slmdvs1.u 1 = (1r𝐹)
Assertion
Ref Expression
slmdvs1 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → ( 1 · 𝑋) = 𝑋)

Proof of Theorem slmdvs1
StepHypRef Expression
1 simpl 473 . 2 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → 𝑊 ∈ SLMod)
2 slmdvs1.f . . . 4 𝐹 = (Scalar‘𝑊)
3 eqid 2621 . . . 4 (Base‘𝐹) = (Base‘𝐹)
4 slmdvs1.u . . . 4 1 = (1r𝐹)
52, 3, 4slmd1cl 29557 . . 3 (𝑊 ∈ SLMod → 1 ∈ (Base‘𝐹))
65adantr 481 . 2 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → 1 ∈ (Base‘𝐹))
7 simpr 477 . 2 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → 𝑋𝑉)
8 slmdvs1.v . . . . 5 𝑉 = (Base‘𝑊)
9 eqid 2621 . . . . 5 (+g𝑊) = (+g𝑊)
10 slmdvs1.s . . . . 5 · = ( ·𝑠𝑊)
11 eqid 2621 . . . . 5 (0g𝑊) = (0g𝑊)
12 eqid 2621 . . . . 5 (+g𝐹) = (+g𝐹)
13 eqid 2621 . . . . 5 (.r𝐹) = (.r𝐹)
14 eqid 2621 . . . . 5 (0g𝐹) = (0g𝐹)
158, 9, 10, 11, 2, 3, 12, 13, 4, 14slmdlema 29541 . . . 4 ((𝑊 ∈ SLMod ∧ ( 1 ∈ (Base‘𝐹) ∧ 1 ∈ (Base‘𝐹)) ∧ (𝑋𝑉𝑋𝑉)) → ((( 1 · 𝑋) ∈ 𝑉 ∧ ( 1 · (𝑋(+g𝑊)𝑋)) = (( 1 · 𝑋)(+g𝑊)( 1 · 𝑋)) ∧ (( 1 (+g𝐹) 1 ) · 𝑋) = (( 1 · 𝑋)(+g𝑊)( 1 · 𝑋))) ∧ ((( 1 (.r𝐹) 1 ) · 𝑋) = ( 1 · ( 1 · 𝑋)) ∧ ( 1 · 𝑋) = 𝑋 ∧ ((0g𝐹) · 𝑋) = (0g𝑊))))
1615simprd 479 . . 3 ((𝑊 ∈ SLMod ∧ ( 1 ∈ (Base‘𝐹) ∧ 1 ∈ (Base‘𝐹)) ∧ (𝑋𝑉𝑋𝑉)) → ((( 1 (.r𝐹) 1 ) · 𝑋) = ( 1 · ( 1 · 𝑋)) ∧ ( 1 · 𝑋) = 𝑋 ∧ ((0g𝐹) · 𝑋) = (0g𝑊)))
1716simp2d 1072 . 2 ((𝑊 ∈ SLMod ∧ ( 1 ∈ (Base‘𝐹) ∧ 1 ∈ (Base‘𝐹)) ∧ (𝑋𝑉𝑋𝑉)) → ( 1 · 𝑋) = 𝑋)
181, 6, 6, 7, 7, 17syl122anc 1332 1 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → ( 1 · 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  cfv 5847  (class class class)co 6604  Basecbs 15781  +gcplusg 15862  .rcmulr 15863  Scalarcsca 15865   ·𝑠 cvsca 15866  0gc0g 16021  1rcur 18422  SLModcslmd 29538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-plusg 15875  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mgp 18411  df-ur 18423  df-srg 18427  df-slmd 29539
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator