Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  slotfn Structured version   Visualization version   GIF version

Theorem slotfn 15922
 Description: A slot is a function on sets, treated as structures. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypothesis
Ref Expression
strfvnd.c 𝐸 = Slot 𝑁
Assertion
Ref Expression
slotfn 𝐸 Fn V

Proof of Theorem slotfn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvex 6239 . 2 (𝑥𝑁) ∈ V
2 strfvnd.c . . 3 𝐸 = Slot 𝑁
3 df-slot 15908 . . 3 Slot 𝑁 = (𝑥 ∈ V ↦ (𝑥𝑁))
42, 3eqtri 2673 . 2 𝐸 = (𝑥 ∈ V ↦ (𝑥𝑁))
51, 4fnmpti 6060 1 𝐸 Fn V
 Colors of variables: wff setvar class Syntax hints:   = wceq 1523  Vcvv 3231   ↦ cmpt 4762   Fn wfn 5921  ‘cfv 5926  Slot cslot 15903 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-iota 5889  df-fun 5928  df-fn 5929  df-fv 5934  df-slot 15908 This theorem is referenced by:  basfn  15924  bascnvimaeqv  16808
 Copyright terms: Public domain W3C validator