Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sltrec Structured version   Visualization version   GIF version

Theorem sltrec 33280
Description: A comparison law for surreals considered as cuts of sets of surreals. (Contributed by Scott Fenton, 11-Dec-2021.)
Assertion
Ref Expression
sltrec (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑋 <s 𝑌 ↔ (∃𝑐𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏𝐵 𝑏 ≤s 𝑌)))
Distinct variable groups:   𝐴,𝑏,𝑐   𝐵,𝑏,𝑐   𝐶,𝑏,𝑐   𝐷,𝑏,𝑐   𝑋,𝑏,𝑐   𝑌,𝑏,𝑐

Proof of Theorem sltrec
StepHypRef Expression
1 simplr 767 . . . . 5 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝐶 <<s 𝐷)
2 simpll 765 . . . . 5 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝐴 <<s 𝐵)
3 simprr 771 . . . . 5 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝑌 = (𝐶 |s 𝐷))
4 simprl 769 . . . . 5 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝑋 = (𝐴 |s 𝐵))
5 slerec 33279 . . . . 5 (((𝐶 <<s 𝐷𝐴 <<s 𝐵) ∧ (𝑌 = (𝐶 |s 𝐷) ∧ 𝑋 = (𝐴 |s 𝐵))) → (𝑌 ≤s 𝑋 ↔ (∀𝑏𝐵 𝑌 <s 𝑏 ∧ ∀𝑐𝐶 𝑐 <s 𝑋)))
61, 2, 3, 4, 5syl22anc 836 . . . 4 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑌 ≤s 𝑋 ↔ (∀𝑏𝐵 𝑌 <s 𝑏 ∧ ∀𝑐𝐶 𝑐 <s 𝑋)))
7 ancom 463 . . . 4 ((∀𝑏𝐵 𝑌 <s 𝑏 ∧ ∀𝑐𝐶 𝑐 <s 𝑋) ↔ (∀𝑐𝐶 𝑐 <s 𝑋 ∧ ∀𝑏𝐵 𝑌 <s 𝑏))
86, 7syl6bb 289 . . 3 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑌 ≤s 𝑋 ↔ (∀𝑐𝐶 𝑐 <s 𝑋 ∧ ∀𝑏𝐵 𝑌 <s 𝑏)))
9 scutcut 33268 . . . . . . 7 (𝐶 <<s 𝐷 → ((𝐶 |s 𝐷) ∈ No 𝐶 <<s {(𝐶 |s 𝐷)} ∧ {(𝐶 |s 𝐷)} <<s 𝐷))
109simp1d 1138 . . . . . 6 (𝐶 <<s 𝐷 → (𝐶 |s 𝐷) ∈ No )
1110ad2antlr 725 . . . . 5 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝐶 |s 𝐷) ∈ No )
123, 11eqeltrd 2915 . . . 4 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝑌 No )
13 scutcut 33268 . . . . . . 7 (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
1413simp1d 1138 . . . . . 6 (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) ∈ No )
1514ad2antrr 724 . . . . 5 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝐴 |s 𝐵) ∈ No )
164, 15eqeltrd 2915 . . . 4 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝑋 No )
17 slenlt 33233 . . . 4 ((𝑌 No 𝑋 No ) → (𝑌 ≤s 𝑋 ↔ ¬ 𝑋 <s 𝑌))
1812, 16, 17syl2anc 586 . . 3 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑌 ≤s 𝑋 ↔ ¬ 𝑋 <s 𝑌))
19 ssltss1 33259 . . . . . . . . 9 (𝐶 <<s 𝐷𝐶 No )
2019ad2antlr 725 . . . . . . . 8 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝐶 No )
2120sselda 3969 . . . . . . 7 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) ∧ 𝑐𝐶) → 𝑐 No )
2216adantr 483 . . . . . . 7 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) ∧ 𝑐𝐶) → 𝑋 No )
23 sltnle 33234 . . . . . . 7 ((𝑐 No 𝑋 No ) → (𝑐 <s 𝑋 ↔ ¬ 𝑋 ≤s 𝑐))
2421, 22, 23syl2anc 586 . . . . . 6 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) ∧ 𝑐𝐶) → (𝑐 <s 𝑋 ↔ ¬ 𝑋 ≤s 𝑐))
2524ralbidva 3198 . . . . 5 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (∀𝑐𝐶 𝑐 <s 𝑋 ↔ ∀𝑐𝐶 ¬ 𝑋 ≤s 𝑐))
2612adantr 483 . . . . . . 7 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) ∧ 𝑏𝐵) → 𝑌 No )
27 ssltss2 33260 . . . . . . . . 9 (𝐴 <<s 𝐵𝐵 No )
2827ad2antrr 724 . . . . . . . 8 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝐵 No )
2928sselda 3969 . . . . . . 7 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) ∧ 𝑏𝐵) → 𝑏 No )
30 sltnle 33234 . . . . . . 7 ((𝑌 No 𝑏 No ) → (𝑌 <s 𝑏 ↔ ¬ 𝑏 ≤s 𝑌))
3126, 29, 30syl2anc 586 . . . . . 6 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) ∧ 𝑏𝐵) → (𝑌 <s 𝑏 ↔ ¬ 𝑏 ≤s 𝑌))
3231ralbidva 3198 . . . . 5 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (∀𝑏𝐵 𝑌 <s 𝑏 ↔ ∀𝑏𝐵 ¬ 𝑏 ≤s 𝑌))
3325, 32anbi12d 632 . . . 4 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → ((∀𝑐𝐶 𝑐 <s 𝑋 ∧ ∀𝑏𝐵 𝑌 <s 𝑏) ↔ (∀𝑐𝐶 ¬ 𝑋 ≤s 𝑐 ∧ ∀𝑏𝐵 ¬ 𝑏 ≤s 𝑌)))
34 ralnex 3238 . . . . . 6 (∀𝑐𝐶 ¬ 𝑋 ≤s 𝑐 ↔ ¬ ∃𝑐𝐶 𝑋 ≤s 𝑐)
35 ralnex 3238 . . . . . 6 (∀𝑏𝐵 ¬ 𝑏 ≤s 𝑌 ↔ ¬ ∃𝑏𝐵 𝑏 ≤s 𝑌)
3634, 35anbi12i 628 . . . . 5 ((∀𝑐𝐶 ¬ 𝑋 ≤s 𝑐 ∧ ∀𝑏𝐵 ¬ 𝑏 ≤s 𝑌) ↔ (¬ ∃𝑐𝐶 𝑋 ≤s 𝑐 ∧ ¬ ∃𝑏𝐵 𝑏 ≤s 𝑌))
37 ioran 980 . . . . 5 (¬ (∃𝑐𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏𝐵 𝑏 ≤s 𝑌) ↔ (¬ ∃𝑐𝐶 𝑋 ≤s 𝑐 ∧ ¬ ∃𝑏𝐵 𝑏 ≤s 𝑌))
3836, 37bitr4i 280 . . . 4 ((∀𝑐𝐶 ¬ 𝑋 ≤s 𝑐 ∧ ∀𝑏𝐵 ¬ 𝑏 ≤s 𝑌) ↔ ¬ (∃𝑐𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏𝐵 𝑏 ≤s 𝑌))
3933, 38syl6bb 289 . . 3 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → ((∀𝑐𝐶 𝑐 <s 𝑋 ∧ ∀𝑏𝐵 𝑌 <s 𝑏) ↔ ¬ (∃𝑐𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏𝐵 𝑏 ≤s 𝑌)))
408, 18, 393bitr3d 311 . 2 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (¬ 𝑋 <s 𝑌 ↔ ¬ (∃𝑐𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏𝐵 𝑏 ≤s 𝑌)))
4140con4bid 319 1 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑋 <s 𝑌 ↔ (∃𝑐𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏𝐵 𝑏 ≤s 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wral 3140  wrex 3141  wss 3938  {csn 4569   class class class wbr 5068  (class class class)co 7158   No csur 33149   <s cslt 33150   ≤s csle 33225   <<s csslt 33252   |s cscut 33254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1o 8104  df-2o 8105  df-no 33152  df-slt 33153  df-bday 33154  df-sle 33226  df-sslt 33253  df-scut 33255
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator